{"title":"Optimum design of coils in a dynamic wireless electric vehicle charger with misalignment compensation capability","authors":"A. Poorfakhraei, Ghazal Movaghar, F. Tahami","doi":"10.1109/PEDSTC.2017.7910362","DOIUrl":null,"url":null,"abstract":"Electric vehicles have been proposed as a proper replacement for fossil fuel-powered vehicles; however, due to the limited power density of electric vehicles batteries, these cars have been facing formidable challenges, such as limited traversed distance. In recent years, dynamic wireless chargers are introduced as an adequate way of addressing this problem in the hope that dealing with this issue can lead to an increase in the popularity of electric vehicles. In this paper, a design procedure for transmitter coil of a dynamic wireless electric vehicles charger is proposed. The procedure includes selecting the best possible shape and calculating optimum size of coils for proper operation of system even in a misaligned situation. Designed transmitter coil satisfies efficiency and output power requirements in pre-determined misalignment range. The procedure is supported by simulation results.","PeriodicalId":414828,"journal":{"name":"2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC)","volume":" 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDSTC.2017.7910362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Electric vehicles have been proposed as a proper replacement for fossil fuel-powered vehicles; however, due to the limited power density of electric vehicles batteries, these cars have been facing formidable challenges, such as limited traversed distance. In recent years, dynamic wireless chargers are introduced as an adequate way of addressing this problem in the hope that dealing with this issue can lead to an increase in the popularity of electric vehicles. In this paper, a design procedure for transmitter coil of a dynamic wireless electric vehicles charger is proposed. The procedure includes selecting the best possible shape and calculating optimum size of coils for proper operation of system even in a misaligned situation. Designed transmitter coil satisfies efficiency and output power requirements in pre-determined misalignment range. The procedure is supported by simulation results.