Yan Yan, Xin Qin, Yige Wu, Nannan Zhang, Jianping Fan, Lei Wang
{"title":"A restricted Boltzmann machine based two-lead electrocardiography classification","authors":"Yan Yan, Xin Qin, Yige Wu, Nannan Zhang, Jianping Fan, Lei Wang","doi":"10.1109/BSN.2015.7299399","DOIUrl":null,"url":null,"abstract":"An restricted Boltzmann machine learning algorithm were proposed in the two-lead heart beat classification problem. ECG classification is a complex pattern recognition problem. The unsupervised learning algorithm of restricted Boltzmann machine is ideal in mining the massive unlabelled ECG wave beats collected in the heart healthcare monitoring applications. A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs. In this paper a deep belief network was constructed and the RBM based algorithm was used in the classification problem. Under the recommended twelve classes by the ANSI/AAMI EC57: 1998/(R)2008 standard as the waveform labels, the algorithm was evaluated on the two-lead ECG dataset of MIT-BIH and gets the performance with accuracy of 98.829%. The proposed algorithm performed well in the two-lead ECG classification problem, which could be generalized to multi-lead unsupervised ECG classification or detection problems.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
An restricted Boltzmann machine learning algorithm were proposed in the two-lead heart beat classification problem. ECG classification is a complex pattern recognition problem. The unsupervised learning algorithm of restricted Boltzmann machine is ideal in mining the massive unlabelled ECG wave beats collected in the heart healthcare monitoring applications. A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs. In this paper a deep belief network was constructed and the RBM based algorithm was used in the classification problem. Under the recommended twelve classes by the ANSI/AAMI EC57: 1998/(R)2008 standard as the waveform labels, the algorithm was evaluated on the two-lead ECG dataset of MIT-BIH and gets the performance with accuracy of 98.829%. The proposed algorithm performed well in the two-lead ECG classification problem, which could be generalized to multi-lead unsupervised ECG classification or detection problems.