P Hainaut, S Giorgetti, A Kowalski, E Van Obberghen
{"title":"Insulin-like effects of vanadate on glucose uptake and on maturation in Xenopus laevis oocytes.","authors":"P Hainaut, S Giorgetti, A Kowalski, E Van Obberghen","doi":"10.1091/mbc.2.4.317","DOIUrl":null,"url":null,"abstract":"<p><p>Vanadate, an inhibitor of phosphotyrosyl phosphatases that exerts insulin-like effects in intact cells, stimulated both maturation and glucose uptake in isolated Xenopus laevis oocytes. Vanadate enhanced the effects of insulin/IGF-I and progesterone on maturation in a dose-dependent manner, with an effective concentration of 750 microM and a maximum at 2 mM, whereas, in the absence of hormone, activation of maturation was seen at 10 mM vanadate. Further, vanadate at 2 mM increased glucose uptake, but this effect was not additive to that of the hormone. In cell-free systems, vanadate caused a 12-fold stimulation of autophosphorylation of the oocyte IGF-I receptor in the absence, but not in the presence, of IGF-I and inhibited largely, but not totally, receptor dephosphorylation induced by an extract of oocytes rich in phosphotyrosyl phosphatase activities. These effects were dose dependent, with effective concentrations of 50-100 microM and maxima at 2 mM. Moreover, using an acellular assay to study the effect of vanadate on the activation of maturation promoting factor (MPF), we found that vanadate at 2 mM stimulated the activation of the MPF H1 kinase. This suggests that vanadate did not prevent dephosphorylation of p34cdc2 on tyrosine residues. Vanadate thus exerted insulin-like effects in oocytes, including stimulation of maturation. These effects might result from a direct or indirect action of vanadate on the IGF-I receptor kinase and on MPF activity.</p>","PeriodicalId":9671,"journal":{"name":"Cell regulation","volume":"2 4","pages":"317-27"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1091/mbc.2.4.317","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1091/mbc.2.4.317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Vanadate, an inhibitor of phosphotyrosyl phosphatases that exerts insulin-like effects in intact cells, stimulated both maturation and glucose uptake in isolated Xenopus laevis oocytes. Vanadate enhanced the effects of insulin/IGF-I and progesterone on maturation in a dose-dependent manner, with an effective concentration of 750 microM and a maximum at 2 mM, whereas, in the absence of hormone, activation of maturation was seen at 10 mM vanadate. Further, vanadate at 2 mM increased glucose uptake, but this effect was not additive to that of the hormone. In cell-free systems, vanadate caused a 12-fold stimulation of autophosphorylation of the oocyte IGF-I receptor in the absence, but not in the presence, of IGF-I and inhibited largely, but not totally, receptor dephosphorylation induced by an extract of oocytes rich in phosphotyrosyl phosphatase activities. These effects were dose dependent, with effective concentrations of 50-100 microM and maxima at 2 mM. Moreover, using an acellular assay to study the effect of vanadate on the activation of maturation promoting factor (MPF), we found that vanadate at 2 mM stimulated the activation of the MPF H1 kinase. This suggests that vanadate did not prevent dephosphorylation of p34cdc2 on tyrosine residues. Vanadate thus exerted insulin-like effects in oocytes, including stimulation of maturation. These effects might result from a direct or indirect action of vanadate on the IGF-I receptor kinase and on MPF activity.