{"title":"Multiple localized nodal solutions of high topological type for Kirchhoff-type equation with double potentials","authors":"Zhi-Guo Wu, Wen Guan, Da-Bin Wang","doi":"10.3934/cpaa.2022058","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We are concerned with sign-changing solutions and their concentration behaviors of singularly perturbed Kirchhoff problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{equation*} -(\\varepsilon^{2}a+ \\varepsilon b\\int _{\\mathbb{R}^{3}}|\\nabla v|^{2}dx)\\Delta v+V(x)v = P(x)f(v)\\; \\; {\\rm{in}}\\; \\mathbb{R}^{3}, \\end{equation*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\varepsilon $\\end{document}</tex-math></inline-formula> is a small positive parameter, <inline-formula><tex-math id=\"M2\">\\begin{document}$ a, b>0 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M3\">\\begin{document}$ V, P\\in C^{1}(\\mathbb{R}^{3}, \\mathbb{R}) $\\end{document}</tex-math></inline-formula>. Without using any non-degeneracy conditions, we obtain multiple localized sign-changing solutions of higher topological type for this problem. Furthermore, we also determine a concrete set as the concentration position of these sign-changing solutions. The main methods we use are penalization techniques and the method of invariant sets of descending flow. It is notice that, when nonlinear potential <inline-formula><tex-math id=\"M4\">\\begin{document}$ P $\\end{document}</tex-math></inline-formula> is a positive constant, our result generalizes the result obtained in [<xref ref-type=\"bibr\" rid=\"b5\">5</xref>] to Kirchhoff problem.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"44 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We are concerned with sign-changing solutions and their concentration behaviors of singularly perturbed Kirchhoff problem
where \begin{document}$ \varepsilon $\end{document} is a small positive parameter, \begin{document}$ a, b>0 $\end{document} and \begin{document}$ V, P\in C^{1}(\mathbb{R}^{3}, \mathbb{R}) $\end{document}. Without using any non-degeneracy conditions, we obtain multiple localized sign-changing solutions of higher topological type for this problem. Furthermore, we also determine a concrete set as the concentration position of these sign-changing solutions. The main methods we use are penalization techniques and the method of invariant sets of descending flow. It is notice that, when nonlinear potential \begin{document}$ P $\end{document} is a positive constant, our result generalizes the result obtained in [5] to Kirchhoff problem.
We are concerned with sign-changing solutions and their concentration behaviors of singularly perturbed Kirchhoff problem \begin{document}$ \begin{equation*} -(\varepsilon^{2}a+ \varepsilon b\int _{\mathbb{R}^{3}}|\nabla v|^{2}dx)\Delta v+V(x)v = P(x)f(v)\; \; {\rm{in}}\; \mathbb{R}^{3}, \end{equation*} $\end{document} where \begin{document}$ \varepsilon $\end{document} is a small positive parameter, \begin{document}$ a, b>0 $\end{document} and \begin{document}$ V, P\in C^{1}(\mathbb{R}^{3}, \mathbb{R}) $\end{document}. Without using any non-degeneracy conditions, we obtain multiple localized sign-changing solutions of higher topological type for this problem. Furthermore, we also determine a concrete set as the concentration position of these sign-changing solutions. The main methods we use are penalization techniques and the method of invariant sets of descending flow. It is notice that, when nonlinear potential \begin{document}$ P $\end{document} is a positive constant, our result generalizes the result obtained in [5] to Kirchhoff problem.