Hyperbolic Thermoelastic Analysis due to Pulsed Heat Input by Numerical Simulation

N. Yu, S. Imatani, Tatsuo Inoue
{"title":"Hyperbolic Thermoelastic Analysis due to Pulsed Heat Input by Numerical Simulation","authors":"N. Yu, S. Imatani, Tatsuo Inoue","doi":"10.1299/JSMEA.49.180","DOIUrl":null,"url":null,"abstract":"Thermo-mechanical behavior in a rod subjected to a pulsed heat input was investigated by numerical simulation using the hyperbolic thermo-elasticity theory derived from the thermal dynamics in the present paper. Unlike the classical thermo-elastic theory with the parabolic energy equation and the hyperbolic motion equation, temperature response and thermal stress due to the temperature change exhibit significant wavy characteristics in the hyperbolic thermo-elasticity theory which is based on the non-Fourier heat conduction. The whole region of the rod is split into the heat disturbed region and the heat undisturbed region by the thermal wave front which is determined by the propagating velocity of the heat wave. The heat wave and elastic wave travel in the body at a finite velocity and reflect at the end of the rod. Thermal shock due to the discontinuous jump in thermal condition, and the reflection of thermal stress at the end terminate of the rod are significant during the heating process.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"2 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Thermo-mechanical behavior in a rod subjected to a pulsed heat input was investigated by numerical simulation using the hyperbolic thermo-elasticity theory derived from the thermal dynamics in the present paper. Unlike the classical thermo-elastic theory with the parabolic energy equation and the hyperbolic motion equation, temperature response and thermal stress due to the temperature change exhibit significant wavy characteristics in the hyperbolic thermo-elasticity theory which is based on the non-Fourier heat conduction. The whole region of the rod is split into the heat disturbed region and the heat undisturbed region by the thermal wave front which is determined by the propagating velocity of the heat wave. The heat wave and elastic wave travel in the body at a finite velocity and reflect at the end of the rod. Thermal shock due to the discontinuous jump in thermal condition, and the reflection of thermal stress at the end terminate of the rod are significant during the heating process.
脉冲热输入的双曲热弹性数值模拟
本文利用热动力学导出的双曲热弹性理论,对受脉冲热输入的棒材的热力学行为进行了数值模拟研究。与基于非傅立叶热传导的经典热弹性理论中抛物线能量方程和双曲运动方程不同,基于非傅立叶热传导的双曲热弹性理论中温度响应和温度变化引起的热应力表现出明显的波动特征。由热波的传播速度决定的热波锋面将棒的整个区域划分为热扰动区和热非扰动区。热波和弹性波以有限速度在体内传播,并在杆的末端反射。在加热过程中,由于热状态的不连续跳变引起的热冲击和热应力在杆端端的反射是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信