Inference of Genetic Networks using a Reduced NGnet Model

Shuhei Kimura, Katsuki Sonoda, S. Yamane, Kotaro Yoshida, Koki Matsumura, Mariko Okada
{"title":"Inference of Genetic Networks using a Reduced NGnet Model","authors":"Shuhei Kimura, Katsuki Sonoda, S. Yamane, Kotaro Yoshida, Koki Matsumura, Mariko Okada","doi":"10.1109/IJCNN.2007.4371083","DOIUrl":null,"url":null,"abstract":"The inference of genetic networks using a model based on a set of differential equations is generally time-consuming. In order to decrease its computational time, we have proposed the inference method using a normalized Gaussian network (NGnet) model. The inferred models however contain many false-positive regulations when we apply the NGnet approach to the genetic network inference problems. This paper proposes the reduced NGnet model and the gradual reduction strategy to overcome the drawbacks of the NGnet approach. Then, in order to verify their effectiveness, we apply the inference method using the proposed techniques to several artificial genetic network inference problems.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"125 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The inference of genetic networks using a model based on a set of differential equations is generally time-consuming. In order to decrease its computational time, we have proposed the inference method using a normalized Gaussian network (NGnet) model. The inferred models however contain many false-positive regulations when we apply the NGnet approach to the genetic network inference problems. This paper proposes the reduced NGnet model and the gradual reduction strategy to overcome the drawbacks of the NGnet approach. Then, in order to verify their effectiveness, we apply the inference method using the proposed techniques to several artificial genetic network inference problems.
基于简化NGnet模型的遗传网络推理
利用基于一组微分方程的模型进行遗传网络的推理通常是费时的。为了减少其计算时间,我们提出了基于归一化高斯网络(NGnet)模型的推理方法。然而,当我们将NGnet方法应用于遗传网络推理问题时,推断出的模型中存在许多假阳性规则。本文提出了简化的NGnet模型和逐步缩减策略来克服NGnet方法的缺点。然后,为了验证其有效性,我们将所提出的推理方法应用于几个人工遗传网络推理问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信