Quantitative Analysis of Community Detection Methods for Longitudinal Mobile Data

S. Muhammad, Kristof Van Laerhoven
{"title":"Quantitative Analysis of Community Detection Methods for Longitudinal Mobile Data","authors":"S. Muhammad, Kristof Van Laerhoven","doi":"10.1109/SOCIETY.2013.17","DOIUrl":null,"url":null,"abstract":"Mobile phones are now equipped with increasingly large number of built-in sensors that can be utilized to collect long-term socio-temporal data of social interactions. Moreover, the data from different built-in sensors can be combined to predict social interactions. In this paper, we perform quantitative analysis of 6 community detection algorithms to uncover the community structure from the mobile data. We use Bluetooth, WLAN, GPS, and contact data for analysis, where each modality is modelled as an undirected weighted graph. We evaluate community detection algorithms across 6 inter-modality pairs, and use well know partition evaluation features to measure clustering similarity between the pairs. We compare the performance of different methods based on the delivered partitions, and analyse the graphs at different times to find out the community stability.","PeriodicalId":348108,"journal":{"name":"2013 International Conference on Social Intelligence and Technology","volume":"399 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Intelligence and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCIETY.2013.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Mobile phones are now equipped with increasingly large number of built-in sensors that can be utilized to collect long-term socio-temporal data of social interactions. Moreover, the data from different built-in sensors can be combined to predict social interactions. In this paper, we perform quantitative analysis of 6 community detection algorithms to uncover the community structure from the mobile data. We use Bluetooth, WLAN, GPS, and contact data for analysis, where each modality is modelled as an undirected weighted graph. We evaluate community detection algorithms across 6 inter-modality pairs, and use well know partition evaluation features to measure clustering similarity between the pairs. We compare the performance of different methods based on the delivered partitions, and analyse the graphs at different times to find out the community stability.
纵向移动数据社区检测方法的定量分析
移动电话现在配备了越来越多的内置传感器,可以用来收集社会互动的长期社会-时间数据。此外,来自不同内置传感器的数据可以结合起来预测社会互动。本文对6种社区检测算法进行了定量分析,从移动数据中揭示社区结构。我们使用蓝牙、WLAN、GPS和联系人数据进行分析,其中每种模态都被建模为无向加权图。我们评估了跨6个模态对的社区检测算法,并使用众所周知的分区评估特征来衡量对之间的聚类相似性。我们根据交付的分区比较了不同方法的性能,并分析了不同时间的图,以找出社区的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信