J. Cong, Yiping Fan, Guoling Han, Wei Jiang, Zhiru Zhang
{"title":"Platform-Based Behavior-Level and System-Level Synthesis","authors":"J. Cong, Yiping Fan, Guoling Han, Wei Jiang, Zhiru Zhang","doi":"10.1109/SOCC.2006.283880","DOIUrl":null,"url":null,"abstract":"With the rapid increase of complexity in system-on-a-chip (SoC) design, the electronic design automation (EDA) community is moving from RTL (Register Transfer Level) synthesis to behavioral-level and system-level synthesis. The needs of system-level verification and software/hardware co-design also prefer behavior-level executable specifications, such as C or SystemC. In this paper we present the platform-based synthesis system, named xPilot, being developed at UCLA. The first objective of xPilot is to provide novel behavioral synthesis capability for automatically generating efficient RTL code from a C or SystemC description for a given system platform and optimizing the logic, interconnects, performance, and power simultaneously. The second objective of xPilot is to provide a platform-based system-level synthesis capability, including both synthesis for application-specific configurable processors and heterogeneous multi-core systems. Preliminary experiments on FPGAs demonstrate the efficacy of our approach on a wide range of applications and its value in exploring various design tradeoffs.","PeriodicalId":345714,"journal":{"name":"2006 IEEE International SOC Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International SOC Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2006.283880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78
Abstract
With the rapid increase of complexity in system-on-a-chip (SoC) design, the electronic design automation (EDA) community is moving from RTL (Register Transfer Level) synthesis to behavioral-level and system-level synthesis. The needs of system-level verification and software/hardware co-design also prefer behavior-level executable specifications, such as C or SystemC. In this paper we present the platform-based synthesis system, named xPilot, being developed at UCLA. The first objective of xPilot is to provide novel behavioral synthesis capability for automatically generating efficient RTL code from a C or SystemC description for a given system platform and optimizing the logic, interconnects, performance, and power simultaneously. The second objective of xPilot is to provide a platform-based system-level synthesis capability, including both synthesis for application-specific configurable processors and heterogeneous multi-core systems. Preliminary experiments on FPGAs demonstrate the efficacy of our approach on a wide range of applications and its value in exploring various design tradeoffs.