ASSIE: Application of Squirrel Search Algorithm for Information Extraction Problem

Rasmita Rautray, Rasmita Dash, Rajashree Dash, Rajendra Kumar Sahoo, Aswasana Pujari, Raunak Kumar Barik, J. Amartya
{"title":"ASSIE: Application of Squirrel Search Algorithm for Information Extraction Problem","authors":"Rasmita Rautray, Rasmita Dash, Rajashree Dash, Rajendra Kumar Sahoo, Aswasana Pujari, Raunak Kumar Barik, J. Amartya","doi":"10.1109/APSIT52773.2021.9641165","DOIUrl":null,"url":null,"abstract":"Currently, within the recent era of huge data, a large volume of unstructured data is being produced in various sorts of audio, video, images, text, and animation. The effective use of those unstructured big data could be a laborious and tedious task. Because of this information overload problem, we face lots of difficulties to extract vital information. For this problem, there's an answer like Information Extraction (IE). IE systems help to extract useful information and structured data from this huge sort of unstructured or semi-structured machine-readable documents and other electronically represented sources. In this study, to extract useful information, a biological-inspired optimization algorithm Squirrel Search Algorithm (SSA) is implemented. The model is validated over traditional benchmark Document Understanding Conferences (DUC) dataset. The result of proposed model is compare with respect to few online line summarizers.","PeriodicalId":436488,"journal":{"name":"2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference in Advances in Power, Signal, and Information Technology (APSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIT52773.2021.9641165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Currently, within the recent era of huge data, a large volume of unstructured data is being produced in various sorts of audio, video, images, text, and animation. The effective use of those unstructured big data could be a laborious and tedious task. Because of this information overload problem, we face lots of difficulties to extract vital information. For this problem, there's an answer like Information Extraction (IE). IE systems help to extract useful information and structured data from this huge sort of unstructured or semi-structured machine-readable documents and other electronically represented sources. In this study, to extract useful information, a biological-inspired optimization algorithm Squirrel Search Algorithm (SSA) is implemented. The model is validated over traditional benchmark Document Understanding Conferences (DUC) dataset. The result of proposed model is compare with respect to few online line summarizers.
松鼠搜索算法在信息抽取问题中的应用
目前,在最近的大数据时代,大量的非结构化数据以各种音频、视频、图像、文本和动画的形式产生。有效利用这些非结构化的大数据可能是一项艰巨而乏味的任务。由于这种信息过载的问题,我们在提取重要信息时面临很多困难。对于这个问题,有一个答案,如信息提取(IE)。IE系统有助于从大量非结构化或半结构化的机器可读文档和其他电子表示源中提取有用的信息和结构化数据。在本研究中,为了提取有用的信息,实现了一种生物启发的优化算法松鼠搜索算法(SSA)。该模型在传统的基准文档理解会议(DUC)数据集上进行了验证。并与几种在线摘要器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信