How Dependencies Affect the Capability of Several Feature Selection Approaches to Extract the Key Features

Qin Yang, R. Gras
{"title":"How Dependencies Affect the Capability of Several Feature Selection Approaches to Extract the Key Features","authors":"Qin Yang, R. Gras","doi":"10.1109/ICMLA.2010.26","DOIUrl":null,"url":null,"abstract":"The goal of this research is to find how dependencies affect the capability of several feature selection approaches to extract of the relevant features for a classification purpose. The hypothesis is that more dependencies and higher level dependencies mean more complexity for the task. Some experiments are used to intend to discover some limitations of several feature selection approaches by altering the degree of dependency of the test datasets. A new method has been proposed, which uses a pair of pre-designed Bayesian Networks to generate the test datasets with an easy tuning level of complexity for feature selection test. Relief, CFS, NB-GA, NB-BOA, SVM-GA, SVM-BOA and SVM-mBOA are the filter or wrapper model feature selection approaches which are used and evaluated in the experiments. For these approaches, higher level of dependency among the relevant features greatly affect the capability to find the relevant features for classification. For Relief, SVM-BOA and SVM-mBOA, if the dependencies among the irrelevant features are altered, the performance of them changes as well. Moreover, a multi-objective optimization method is used to keep the diversity of the populations in each generation of the BOA search algorithm improving the overall quality of solutions in our experiments.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The goal of this research is to find how dependencies affect the capability of several feature selection approaches to extract of the relevant features for a classification purpose. The hypothesis is that more dependencies and higher level dependencies mean more complexity for the task. Some experiments are used to intend to discover some limitations of several feature selection approaches by altering the degree of dependency of the test datasets. A new method has been proposed, which uses a pair of pre-designed Bayesian Networks to generate the test datasets with an easy tuning level of complexity for feature selection test. Relief, CFS, NB-GA, NB-BOA, SVM-GA, SVM-BOA and SVM-mBOA are the filter or wrapper model feature selection approaches which are used and evaluated in the experiments. For these approaches, higher level of dependency among the relevant features greatly affect the capability to find the relevant features for classification. For Relief, SVM-BOA and SVM-mBOA, if the dependencies among the irrelevant features are altered, the performance of them changes as well. Moreover, a multi-objective optimization method is used to keep the diversity of the populations in each generation of the BOA search algorithm improving the overall quality of solutions in our experiments.
依赖关系如何影响几种特征选择方法提取关键特征的能力
本研究的目标是发现依赖关系如何影响几种特征选择方法提取相关特征以用于分类目的的能力。假设更多的依赖关系和更高级别的依赖关系意味着任务的复杂性更高。一些实验旨在通过改变测试数据集的依赖程度来发现几种特征选择方法的一些局限性。提出了一种新的方法,利用预先设计的一对贝叶斯网络生成复杂度易于调优的测试数据集进行特征选择测试。Relief、CFS、NB-GA、NB-BOA、SVM-GA、SVM-BOA和SVM-mBOA是实验中使用和评估的滤波或包装模型特征选择方法。对于这些方法,相关特征之间较高的依赖程度极大地影响了找到相关特征进行分类的能力。对于Relief、SVM-BOA和SVM-mBOA,如果不相关特征之间的依赖关系发生改变,它们的性能也会发生变化。此外,我们还采用了多目标优化方法来保持每一代BOA搜索算法中种群的多样性,从而提高了实验中解决方案的整体质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信