{"title":"Offline Signature Verification Using Support Vector Machine","authors":"Kruthi C, Deepika C Shet","doi":"10.1109/ICSIP.2014.5","DOIUrl":null,"url":null,"abstract":"This paper aims at developing a support vector machine for identity verification of offline signature based on the feature values in the database. A set of signature samples are collected from individuals and these signature samples are scanned in a gray scale scanner. These scanned signature images are then subjected to a number of image enhancement operations like binarization, complementation, filtering, thinning and edge detection. From these pre-processed signatures, features such as centroid, centre of gravity, calculation of number of loops, horizontal and vertical profile and normalized area are extracted and stored in a database separately. The values from the database are fed to the support vector machine which draws a hyper plane and classifies the signature into original or forged based on a particular feature value. The developed SVM is successfully tested against 336 signature samples and the classification error rate is less than 7.16% and this is found to be convincing.","PeriodicalId":111591,"journal":{"name":"2014 Fifth International Conference on Signal and Image Processing","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fifth International Conference on Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIP.2014.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
This paper aims at developing a support vector machine for identity verification of offline signature based on the feature values in the database. A set of signature samples are collected from individuals and these signature samples are scanned in a gray scale scanner. These scanned signature images are then subjected to a number of image enhancement operations like binarization, complementation, filtering, thinning and edge detection. From these pre-processed signatures, features such as centroid, centre of gravity, calculation of number of loops, horizontal and vertical profile and normalized area are extracted and stored in a database separately. The values from the database are fed to the support vector machine which draws a hyper plane and classifies the signature into original or forged based on a particular feature value. The developed SVM is successfully tested against 336 signature samples and the classification error rate is less than 7.16% and this is found to be convincing.