Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form
{"title":"Finite-difference methods for solving a nonlocal boundary value problem for a multidimensional parabolic equation with boundary conditions of integral form","authors":"Z. Beshtokova","doi":"10.47910/femj202201","DOIUrl":null,"url":null,"abstract":"The article considers a non-local boundary value problem for a multidimensional parabolic equation with integral boundary conditions. To solve the problem, we obtain an a priori estimate in differential form, which implies the uniqueness and stability of the solution with respect to the right-hand side and initial data on the layer in the $L_2$-norm. For the numerical solution of a nonlocal boundary value problem, a locally one-dimensional (economical) difference scheme by A.A. Samarskii with the order of approximation $O(h^2+\\tau)$, the main idea of which is to reduce the transition from layer to layer to the sequential solution of a number of one-dimensional problems in each of the coordinate directions. Using the method of energy inequalities, a priori estimates are obtained, which imply uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem in the $L_2$-norm at a rate equal to the order of approximation of the difference scheme. An algorithm for the numerical solution is constructed.","PeriodicalId":388451,"journal":{"name":"Dal'nevostochnyi Matematicheskii Zhurnal","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dal'nevostochnyi Matematicheskii Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47910/femj202201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article considers a non-local boundary value problem for a multidimensional parabolic equation with integral boundary conditions. To solve the problem, we obtain an a priori estimate in differential form, which implies the uniqueness and stability of the solution with respect to the right-hand side and initial data on the layer in the $L_2$-norm. For the numerical solution of a nonlocal boundary value problem, a locally one-dimensional (economical) difference scheme by A.A. Samarskii with the order of approximation $O(h^2+\tau)$, the main idea of which is to reduce the transition from layer to layer to the sequential solution of a number of one-dimensional problems in each of the coordinate directions. Using the method of energy inequalities, a priori estimates are obtained, which imply uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem in the $L_2$-norm at a rate equal to the order of approximation of the difference scheme. An algorithm for the numerical solution is constructed.