{"title":"Photodiode Camera Measurement of Surface Strains on Tendons during Multiple Cyclic Tests","authors":"K. Chun, R. Hubbard","doi":"10.1299/JSMEA.49.282","DOIUrl":null,"url":null,"abstract":"The objectives of this study are to introduce the use of a photodiode camera for measuring surface strain on soft tissue and to present some representative responses of the tendon. Tendon specimens were obtained from the hindlimbs of canines and frozen to -70°C. After thawing, specimens were mounted in the immersion bath at a room temperature (22°C), preloaded to 0.13N and then subjected to 3% of the initial length at a strain rate of 2%/sec. In tendons which were tested in two blocks of seven repeated extensions to 3% strain with a 120 seconds wait period between, the surface strains were measured with a photodiode camera and near the gripped ends generally were greater than the surface strains in the middle segment of the tendon specimens. The recovery for peak load after the rest period was consistent but the changes in patterns of surface strains after the rest period were not consistent. The advantages of a photodiode measurement of surface strains include the followings: 1) it is a noncontacting method which eliminates errors and distortions caused by clip gauges or mechanical/electronic transducers; 2) it is more accurate than previous noncontact methods, e.g. the VDA and the high speed photographic method; 3) it is a fully automatic, thus reducing labor for replaying video tapes or films and potential errors from human judgement which can occur during digitizing data from photographs. Because the photodiode camera, employs a solid state photodiode array to sense black and white images, scan targets (black image) on the surface of the tendon specimen and back lighting system (white image), and stored automatically image data for surface strains of the tendon specimen on the computer during cyclic extensions.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The objectives of this study are to introduce the use of a photodiode camera for measuring surface strain on soft tissue and to present some representative responses of the tendon. Tendon specimens were obtained from the hindlimbs of canines and frozen to -70°C. After thawing, specimens were mounted in the immersion bath at a room temperature (22°C), preloaded to 0.13N and then subjected to 3% of the initial length at a strain rate of 2%/sec. In tendons which were tested in two blocks of seven repeated extensions to 3% strain with a 120 seconds wait period between, the surface strains were measured with a photodiode camera and near the gripped ends generally were greater than the surface strains in the middle segment of the tendon specimens. The recovery for peak load after the rest period was consistent but the changes in patterns of surface strains after the rest period were not consistent. The advantages of a photodiode measurement of surface strains include the followings: 1) it is a noncontacting method which eliminates errors and distortions caused by clip gauges or mechanical/electronic transducers; 2) it is more accurate than previous noncontact methods, e.g. the VDA and the high speed photographic method; 3) it is a fully automatic, thus reducing labor for replaying video tapes or films and potential errors from human judgement which can occur during digitizing data from photographs. Because the photodiode camera, employs a solid state photodiode array to sense black and white images, scan targets (black image) on the surface of the tendon specimen and back lighting system (white image), and stored automatically image data for surface strains of the tendon specimen on the computer during cyclic extensions.