DEGREE, MIXING, AND ABSOLUTELY CONTINUOUS SPECTRUM OF COCYCLES WITH VALUES IN COMPACT LIE GROUPS

R. T. Aldecoa
{"title":"DEGREE, MIXING, AND ABSOLUTELY CONTINUOUS SPECTRUM OF COCYCLES WITH VALUES IN COMPACT LIE GROUPS","authors":"R. T. Aldecoa","doi":"10.17654/DS030040135","DOIUrl":null,"url":null,"abstract":"We consider skew products $$T_\\phi:X\\times G\\to X\\times G,~~(x,g)\\mapsto(F_1(x),g\\;\\!\\phi(x)),$$ where $X$ is a compact manifold with probability measure, $G$ a compact Lie group with Lie algebra $\\frak g$, $F_1:X\\to X$ the time-one map of a measure-preserving flow, and $\\phi\\in C^1(X,G)$ a cocycle. Then, we define the degree of $\\phi$ as a suitable function $P_\\phi M_\\phi:X\\to\\frak g$, we show that it transforms in a natural way under Lie group homomorphisms and under the relation of $C^1$-cohomology, and we explain how it generalises previous definitions of degree of a cocycle. For each finite-dimensional irreducible representation $\\pi$ of $G$, and $\\frak g_\\pi$ the Lie algebra of $\\pi(G)$, we define in an analogous way the degree of $\\pi\\circ\\phi$ as a suitable function $P_{\\pi\\circ\\phi}M_{\\pi\\circ\\phi}:X\\to\\frak g_\\pi$. If $F_1$ is uniquely ergodic and the functions $\\pi\\circ\\phi$ diagonal, or if $T_\\phi$ is uniquely ergodic, then the degree of $\\phi$ reduces to a constant in $\\frak g$ given by an integral over $X$. As a by-product, we obtain that there is no uniquely ergodic skew product $T_\\phi$ with nonzero degree if $G$ is a connected semisimple compact Lie group. \nNext, we show that $T_\\phi$ is mixing in the orthocomplement of the kernel of $P_{\\pi\\circ\\phi}M_{\\pi\\circ\\phi}$, and under some additional assumptions we show that $U_\\phi$ has purely absolutely continuous spectrum in that orthocomplement if $(iP_{\\pi\\circ\\phi}M_{\\pi\\circ\\phi})^2$ is strictly positive. Summing up these results for each $\\pi$, one obtains a global result for the mixing and the absolutely continuous spectrum of $T_\\phi$. As an application, we present four explicit cases: when $G$ is a torus, $G=SU(2)$, $G=SO(3,\\mathbb R)$, and $G=U(2)$. In each case, the results we obtain are new, or generalise previous results. \nOur proofs rely on new results on positive commutator methods for unitary operators.","PeriodicalId":330387,"journal":{"name":"Far East Journal of Dynamical Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far East Journal of Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/DS030040135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider skew products $$T_\phi:X\times G\to X\times G,~~(x,g)\mapsto(F_1(x),g\;\!\phi(x)),$$ where $X$ is a compact manifold with probability measure, $G$ a compact Lie group with Lie algebra $\frak g$, $F_1:X\to X$ the time-one map of a measure-preserving flow, and $\phi\in C^1(X,G)$ a cocycle. Then, we define the degree of $\phi$ as a suitable function $P_\phi M_\phi:X\to\frak g$, we show that it transforms in a natural way under Lie group homomorphisms and under the relation of $C^1$-cohomology, and we explain how it generalises previous definitions of degree of a cocycle. For each finite-dimensional irreducible representation $\pi$ of $G$, and $\frak g_\pi$ the Lie algebra of $\pi(G)$, we define in an analogous way the degree of $\pi\circ\phi$ as a suitable function $P_{\pi\circ\phi}M_{\pi\circ\phi}:X\to\frak g_\pi$. If $F_1$ is uniquely ergodic and the functions $\pi\circ\phi$ diagonal, or if $T_\phi$ is uniquely ergodic, then the degree of $\phi$ reduces to a constant in $\frak g$ given by an integral over $X$. As a by-product, we obtain that there is no uniquely ergodic skew product $T_\phi$ with nonzero degree if $G$ is a connected semisimple compact Lie group. Next, we show that $T_\phi$ is mixing in the orthocomplement of the kernel of $P_{\pi\circ\phi}M_{\pi\circ\phi}$, and under some additional assumptions we show that $U_\phi$ has purely absolutely continuous spectrum in that orthocomplement if $(iP_{\pi\circ\phi}M_{\pi\circ\phi})^2$ is strictly positive. Summing up these results for each $\pi$, one obtains a global result for the mixing and the absolutely continuous spectrum of $T_\phi$. As an application, we present four explicit cases: when $G$ is a torus, $G=SU(2)$, $G=SO(3,\mathbb R)$, and $G=U(2)$. In each case, the results we obtain are new, or generalise previous results. Our proofs rely on new results on positive commutator methods for unitary operators.
紧李群中带值环的度、混合和绝对连续谱
我们考虑斜积$$T_\phi:X\times G\to X\times G,~~(x,g)\mapsto(F_1(x),g\;\!\phi(x)),$$,其中$X$是一个具有概率测度的紧流形,$G$是一个具有李代数的紧李群$\frak g$, $F_1:X\to X$是一个保测度流的时间一映射,$\phi\in C^1(X,G)$是一个循环。然后,我们将$\phi$的度数定义为一个合适的函数$P_\phi M_\phi:X\to\frak g$,证明了它在李群同态和$C^1$ -上同调关系下的自然变换,并解释了它是如何推广以往关于循环度数的定义的。对于$G$的每个有限维不可约表示$\pi$和$\pi(G)$的李代数$\frak g_\pi$,我们以类似的方式将$\pi\circ\phi$的度定义为一个合适的函数$P_{\pi\circ\phi}M_{\pi\circ\phi}:X\to\frak g_\pi$。如果$F_1$是唯一遍历的,并且函数$\pi\circ\phi$是对角的,或者如果$T_\phi$是唯一遍历的,那么$\phi$的阶在$\frak g$中化为一个常数,由$X$上的积分给出。作为副产物,我们得到了如果$G$是连通的半单紧李群,不存在唯一的非零度遍历偏积$T_\phi$。接下来,我们证明$T_\phi$在$P_{\pi\circ\phi}M_{\pi\circ\phi}$核的正补中混合,并且在一些额外的假设下,我们证明$U_\phi$在该正补中具有纯粹的绝对连续谱,如果$(iP_{\pi\circ\phi}M_{\pi\circ\phi})^2$是严格正的。将每个$\pi$的结果总结起来,就可以得到$T_\phi$的混合和绝对连续谱的全局结果。作为一个应用程序,我们给出了四种明确的情况:$G$是环面、$G=SU(2)$、$G=SO(3,\mathbb R)$和$G=U(2)$。在每种情况下,我们获得的结果都是新的,或者是对以前结果的概括。我们的证明依赖于酉算子正对易子方法的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信