Privacy-preserving source separation for distributed data using independent component analysis

H. Imtiaz, Rogers F. Silva, Bradley T. Baker, S. Plis, A. Sarwate, V. Calhoun
{"title":"Privacy-preserving source separation for distributed data using independent component analysis","authors":"H. Imtiaz, Rogers F. Silva, Bradley T. Baker, S. Plis, A. Sarwate, V. Calhoun","doi":"10.1109/CISS.2016.7460488","DOIUrl":null,"url":null,"abstract":"Building good feature representations and learning hidden source models typically requires large sample sizes. In many applications, however, the size of the sample at an individual data holder may not be sufficient. One such application is neuroimaging analyses for mental health disorders - there are many individual research groups, each with a moderate number of subjects. Pooling such data can enable efficient feature learning, but privacy concerns prevent sharing the underlying data. We propose a model for private feature learning in which the data holders share differentially private views of their respective datasets to enable collaborative learning of a joint feature map. We give an example of such an algorithm for independent component analysis (ICA) - a popular blind source separation algorithm used in neuroimaging analyses. Our algorithm is a differentially private version of the recently proposed distributed joint ICA algorithm. We evaluate the performance of this method on simulated functional magnetic resonance imaging (fMRI) data.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Building good feature representations and learning hidden source models typically requires large sample sizes. In many applications, however, the size of the sample at an individual data holder may not be sufficient. One such application is neuroimaging analyses for mental health disorders - there are many individual research groups, each with a moderate number of subjects. Pooling such data can enable efficient feature learning, but privacy concerns prevent sharing the underlying data. We propose a model for private feature learning in which the data holders share differentially private views of their respective datasets to enable collaborative learning of a joint feature map. We give an example of such an algorithm for independent component analysis (ICA) - a popular blind source separation algorithm used in neuroimaging analyses. Our algorithm is a differentially private version of the recently proposed distributed joint ICA algorithm. We evaluate the performance of this method on simulated functional magnetic resonance imaging (fMRI) data.
使用独立组件分析对分布式数据进行保护隐私的源分离
构建良好的特征表示和学习隐藏源模型通常需要较大的样本量。然而,在许多应用程序中,单个数据持有者的样本大小可能还不够。其中一个应用是对精神健康障碍的神经成像分析——有许多独立的研究小组,每个小组都有适当数量的研究对象。这样的数据池可以实现高效的特性学习,但隐私问题阻碍了底层数据的共享。我们提出了一个私有特征学习模型,其中数据持有者共享各自数据集的不同私有视图,以实现联合特征图的协作学习。我们给出了独立分量分析(ICA)算法的一个例子,ICA是一种流行的用于神经成像分析的盲源分离算法。我们的算法是最近提出的分布式联合ICA算法的差异私有版本。我们在模拟功能磁共振成像(fMRI)数据上评估了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信