Recurrent Neural Networks for Signature Generation

R. A. Zitar, Mirna Nachouki, Hanan Hussain, Farid Alzboun
{"title":"Recurrent Neural Networks for Signature Generation","authors":"R. A. Zitar, Mirna Nachouki, Hanan Hussain, Farid Alzboun","doi":"10.1109/CISP-BMEI51763.2020.9263638","DOIUrl":null,"url":null,"abstract":"A new technique for producing hash values for text documents is introduced in this report. The method uses Recurrent Neural Networks (RNN). RNNs are functionally and temporally dependent on the input vectors of the neural networks (RNN). RNN 's capacity to integrate current values of inputs with previous values that manipulate the associations and the semanticists of the document constitutes a competitive framework for discovering internal interpretations of document details in a special way. In contrast to conventional approaches, two forms of RNNs are evaluated. Current approaches have been adequately examined and the effects of this study reveal the applicability of this artificial intelligence model to construct hash values for plain text. RNNs are very lightweight , portable and parallel in nature and their abilities are used as a potential professional document hashing technology is presented in this article.","PeriodicalId":346757,"journal":{"name":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI51763.2020.9263638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A new technique for producing hash values for text documents is introduced in this report. The method uses Recurrent Neural Networks (RNN). RNNs are functionally and temporally dependent on the input vectors of the neural networks (RNN). RNN 's capacity to integrate current values of inputs with previous values that manipulate the associations and the semanticists of the document constitutes a competitive framework for discovering internal interpretations of document details in a special way. In contrast to conventional approaches, two forms of RNNs are evaluated. Current approaches have been adequately examined and the effects of this study reveal the applicability of this artificial intelligence model to construct hash values for plain text. RNNs are very lightweight , portable and parallel in nature and their abilities are used as a potential professional document hashing technology is presented in this article.
用于签名生成的递归神经网络
本报告介绍了一种为文本文档生成散列值的新技术。该方法使用递归神经网络(RNN)。RNN在功能和时间上依赖于神经网络(RNN)的输入向量。RNN将输入的当前值与先前值集成的能力,这些值可以操纵文档的关联和语义,这构成了一个竞争性框架,可以以一种特殊的方式发现文档细节的内部解释。与传统方法不同,本文评估了两种形式的rnn。目前的方法已经得到了充分的检验,本研究的结果揭示了这种人工智能模型在构建纯文本哈希值方面的适用性。rnn在本质上是非常轻量级、可移植和并行的,本文介绍了它们的能力作为一种潜在的专业文档哈希技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信