{"title":"An Analysis of SiC Power Electronics Implementation in Green Energy Based Extremely Fast Charging","authors":"Naireeta Deb, Rajendra Singh","doi":"10.55708/js0105024","DOIUrl":null,"url":null,"abstract":"Existing extremely fast charging (XFC) of electrical vehicles (EVs) is based on silicon power electronics and internal conversion of AC power into DC power. In this paper it has been shown that silicon carbide power electronics and the use of DC power source in the design of XFC of EVs has many distinct advantages over current XFC of EVs. Silicon carbide power electronics provide reduction of charging time, higher power conversion efficiency, size reduction of heat sink and improved battery’s state of health. The use of larger size silicon carbide wafers will further reduce the cost of power electronics based on silicon carbide. Use of green energy sources (solar and wind) and lithiumion batteries for electrical power storage can provide end to end DC power network. Such networks combined with silicon carbide based XFC of EVs can play a revolutionary role in saving green electrical and provide reduced of charging of EVs. This paper reports almost 50% reduction in power losses by using Silicon Carbide DC technology. End to end DC power networks combined with SiC based XFC of EVs can play a revolutionary role in solving climate emergency.","PeriodicalId":156864,"journal":{"name":"Journal of Engineering Research and Sciences","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55708/js0105024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Existing extremely fast charging (XFC) of electrical vehicles (EVs) is based on silicon power electronics and internal conversion of AC power into DC power. In this paper it has been shown that silicon carbide power electronics and the use of DC power source in the design of XFC of EVs has many distinct advantages over current XFC of EVs. Silicon carbide power electronics provide reduction of charging time, higher power conversion efficiency, size reduction of heat sink and improved battery’s state of health. The use of larger size silicon carbide wafers will further reduce the cost of power electronics based on silicon carbide. Use of green energy sources (solar and wind) and lithiumion batteries for electrical power storage can provide end to end DC power network. Such networks combined with silicon carbide based XFC of EVs can play a revolutionary role in saving green electrical and provide reduced of charging of EVs. This paper reports almost 50% reduction in power losses by using Silicon Carbide DC technology. End to end DC power networks combined with SiC based XFC of EVs can play a revolutionary role in solving climate emergency.