A Multimodal-Sensor-Enabled Room for Unobtrusive Group Meeting Analysis

Indrani Bhattacharya, Michael Foley, Ni Zhang, Tongtao Zhang, Christine Ku, Cameron Mine, Heng Ji, Christoph Riedl, B. F. Welles, R. Radke
{"title":"A Multimodal-Sensor-Enabled Room for Unobtrusive Group Meeting Analysis","authors":"Indrani Bhattacharya, Michael Foley, Ni Zhang, Tongtao Zhang, Christine Ku, Cameron Mine, Heng Ji, Christoph Riedl, B. F. Welles, R. Radke","doi":"10.1145/3242969.3243022","DOIUrl":null,"url":null,"abstract":"Group meetings can suffer from serious problems that undermine performance, including bias, \"groupthink\", fear of speaking, and unfocused discussion. To better understand these issues, propose interventions, and thus improve team performance, we need to study human dynamics in group meetings. However, this process currently heavily depends on manual coding and video cameras. Manual coding is tedious, inaccurate, and subjective, while active video cameras can affect the natural behavior of meeting participants. Here, we present a smart meeting room that combines microphones and unobtrusive ceiling-mounted Time-of-Flight (ToF) sensors to understand group dynamics in team meetings. We automatically process the multimodal sensor outputs with signal, image, and natural language processing algorithms to estimate participant head pose, visual focus of attention (VFOA), non-verbal speech patterns, and discussion content. We derive metrics from these automatic estimates and correlate them with user-reported rankings of emergent group leaders and major contributors to produce accurate predictors. We validate our algorithms and report results on a new dataset of lunar survival tasks of 36 individuals across 10 groups collected in the multimodal-sensor-enabled smart room.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3243022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Group meetings can suffer from serious problems that undermine performance, including bias, "groupthink", fear of speaking, and unfocused discussion. To better understand these issues, propose interventions, and thus improve team performance, we need to study human dynamics in group meetings. However, this process currently heavily depends on manual coding and video cameras. Manual coding is tedious, inaccurate, and subjective, while active video cameras can affect the natural behavior of meeting participants. Here, we present a smart meeting room that combines microphones and unobtrusive ceiling-mounted Time-of-Flight (ToF) sensors to understand group dynamics in team meetings. We automatically process the multimodal sensor outputs with signal, image, and natural language processing algorithms to estimate participant head pose, visual focus of attention (VFOA), non-verbal speech patterns, and discussion content. We derive metrics from these automatic estimates and correlate them with user-reported rankings of emergent group leaders and major contributors to produce accurate predictors. We validate our algorithms and report results on a new dataset of lunar survival tasks of 36 individuals across 10 groups collected in the multimodal-sensor-enabled smart room.
一个多模态传感器支持的会议室,用于不引人注目的小组会议分析
小组会议可能会出现严重的问题,影响绩效,包括偏见、“群体思维”、害怕发言和讨论不集中。为了更好地理解这些问题,提出干预措施,从而提高团队绩效,我们需要研究小组会议中的人类动态。然而,这个过程目前严重依赖于人工编码和摄像机。手动编码是乏味的、不准确的和主观的,而活动的视频摄像机会影响会议参与者的自然行为。在这里,我们展示了一个智能会议室,它结合了麦克风和不显眼的天花板安装的飞行时间(ToF)传感器,以了解团队会议中的群体动态。我们使用信号、图像和自然语言处理算法自动处理多模态传感器输出,以估计参与者的头部姿势、视觉焦点(VFOA)、非语言语音模式和讨论内容。我们从这些自动估计中得出指标,并将它们与用户报告的紧急小组领导和主要贡献者的排名联系起来,以产生准确的预测。我们验证了我们的算法,并报告了在启用多模态传感器的智能房间中收集的10组36个人月球生存任务的新数据集的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信