Controlled Sensing and Anomaly Detection Via Soft Actor-Critic Reinforcement Learning

Chen Zhong, M. C. Gursoy, Senem Velipasalar
{"title":"Controlled Sensing and Anomaly Detection Via Soft Actor-Critic Reinforcement Learning","authors":"Chen Zhong, M. C. Gursoy, Senem Velipasalar","doi":"10.1109/icassp43922.2022.9747436","DOIUrl":null,"url":null,"abstract":"To address the anomaly detection problem in the presence of noisy observations and to tackle the tuning and efficient exploration challenges that arise in deep reinforcement learning algorithms, we in this paper propose a soft actor-critic deep reinforcement learning framework. To evaluate the proposed framework, we measure its performance in terms of detection accuracy, stopping time, and the total number of samples needed for detection. Via simulation results, we demonstrate the performance when soft actor-critic algorithms are employed, and identify the impact of key parameters, such as the sensing cost, on the performance. In all results, we further provide comparisons between the performances of the proposed soft actor-critic and conventional actor-critic algorithms.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To address the anomaly detection problem in the presence of noisy observations and to tackle the tuning and efficient exploration challenges that arise in deep reinforcement learning algorithms, we in this paper propose a soft actor-critic deep reinforcement learning framework. To evaluate the proposed framework, we measure its performance in terms of detection accuracy, stopping time, and the total number of samples needed for detection. Via simulation results, we demonstrate the performance when soft actor-critic algorithms are employed, and identify the impact of key parameters, such as the sensing cost, on the performance. In all results, we further provide comparisons between the performances of the proposed soft actor-critic and conventional actor-critic algorithms.
基于软Actor-Critic强化学习的受控传感和异常检测
为了解决存在噪声观测的异常检测问题,并解决深度强化学习算法中出现的调优和高效探索挑战,我们在本文中提出了一个软行为者批评深度强化学习框架。为了评估所提出的框架,我们根据检测精度、停止时间和检测所需的样本总数来衡量其性能。通过仿真结果,我们展示了采用软行为评价算法时的性能,并确定了关键参数(如传感成本)对性能的影响。在所有结果中,我们进一步比较了所提出的软演员评论和传统演员评论算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信