A Vector-based EEG Signal Feature Extraction Technique for BCI Applications

Abhineet Saxena, V. K. Siriah, Vandana Agarwal
{"title":"A Vector-based EEG Signal Feature Extraction Technique for BCI Applications","authors":"Abhineet Saxena, V. K. Siriah, Vandana Agarwal","doi":"10.1109/INFOCOMTECH.2018.8722350","DOIUrl":null,"url":null,"abstract":"Brain Computer Interface (BCI) systems offer the ability to effect actuations in the users environment, bypassing the neuro-muscular pathway. The optimal functioning of BCI systems is predicated on two important aspects of the analysis pipeline - informative feature extraction and accurate classification. We propose a simple yet distinct approach to perform the former using a vector-based treatment of signal data and covariance matrices. Our results show a comparable level of performance to certain variants of CSP algorithm. We also present the optimal classifier parameters obtained after parameter-tuning of certain standard classifier models over the BCI Competition III, data-set IVa.","PeriodicalId":175757,"journal":{"name":"2018 Conference on Information and Communication Technology (CICT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Information and Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMTECH.2018.8722350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain Computer Interface (BCI) systems offer the ability to effect actuations in the users environment, bypassing the neuro-muscular pathway. The optimal functioning of BCI systems is predicated on two important aspects of the analysis pipeline - informative feature extraction and accurate classification. We propose a simple yet distinct approach to perform the former using a vector-based treatment of signal data and covariance matrices. Our results show a comparable level of performance to certain variants of CSP algorithm. We also present the optimal classifier parameters obtained after parameter-tuning of certain standard classifier models over the BCI Competition III, data-set IVa.
基于向量的脑电信号特征提取技术在脑机接口中的应用
脑机接口(BCI)系统提供了在用户环境中影响驱动的能力,绕过神经-肌肉通路。BCI系统的最佳功能是基于分析管道的两个重要方面-信息特征提取和准确分类。我们提出了一种简单而独特的方法来执行前者,使用基于向量的信号数据和协方差矩阵处理。我们的结果显示了与CSP算法的某些变体相当的性能水平。我们还提出了在BCI Competition III数据集IVa上对某些标准分类器模型进行参数调优后获得的最优分类器参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信