Viewport-Aware Omnidirectional Video Streaming Using Visual Attention and Dynamic Tiles

C. Ozcinar, J. Cabrera, A. Smolic
{"title":"Viewport-Aware Omnidirectional Video Streaming Using Visual Attention and Dynamic Tiles","authors":"C. Ozcinar, J. Cabrera, A. Smolic","doi":"10.1109/EUVIP.2018.8611777","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new adaptive omnidirectional video (ODV) streaming system that uses visual attention (VA) maps, providing enhanced virtual reality (VR) video experiences. Our proposed method benefits from dynamic tiling and viewport-aware bitrate allocation algorithms. Our main contribution is utilizing the VA maps for deciding the tiling structure (i.e., tile scheme) per chunk and distributing a given bitrate budget to each tile in a viewport-aware way. For this, we first estimate viewport-based VA maps using the collected users' viewport trajectories. Then, an optimal pair of tiling scheme and unequal bitrate allocation for each tile of a given content is determined per chunk by calculating the expected viewport quality using our proposed VA-weighted objective quality measurement (OmniVA). We evaluate the proposed method performance with varying bandwidth conditions and viewport trajectories from different users. The results show that the proposed method significantly outperforms the existing tiled-based method in terms of viewport-PSNR.","PeriodicalId":252212,"journal":{"name":"2018 7th European Workshop on Visual Information Processing (EUVIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2018.8611777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we introduce a new adaptive omnidirectional video (ODV) streaming system that uses visual attention (VA) maps, providing enhanced virtual reality (VR) video experiences. Our proposed method benefits from dynamic tiling and viewport-aware bitrate allocation algorithms. Our main contribution is utilizing the VA maps for deciding the tiling structure (i.e., tile scheme) per chunk and distributing a given bitrate budget to each tile in a viewport-aware way. For this, we first estimate viewport-based VA maps using the collected users' viewport trajectories. Then, an optimal pair of tiling scheme and unequal bitrate allocation for each tile of a given content is determined per chunk by calculating the expected viewport quality using our proposed VA-weighted objective quality measurement (OmniVA). We evaluate the proposed method performance with varying bandwidth conditions and viewport trajectories from different users. The results show that the proposed method significantly outperforms the existing tiled-based method in terms of viewport-PSNR.
使用视觉注意力和动态磁贴的视口感知全方位视频流
在本文中,我们介绍了一种新的自适应全向视频(ODV)流系统,该系统使用视觉注意(VA)地图,提供增强的虚拟现实(VR)视频体验。我们提出的方法受益于动态平铺和视口感知比特率分配算法。我们的主要贡献是利用VA贴图来决定每个块的平铺结构(例如,平铺方案),并以视口感知的方式将给定的比特率预算分配给每个平铺。为此,我们首先使用收集到的用户的视口轨迹估计基于视口的VA地图。然后,通过使用我们提出的va加权客观质量测量(OmniVA)计算期望的视口质量,确定每个块的最佳平铺方案对和给定内容的每个平铺的不平等比特率分配。我们在不同的带宽条件和不同用户的视口轨迹下评估了所提出的方法的性能。结果表明,该方法在viewport-PSNR方面明显优于现有的基于平铺的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信