Application and challenges of deep neural network in fault diagnosis of aviation equipment

Sen Wang, Peng Li, Wei-hua Niu
{"title":"Application and challenges of deep neural network in fault diagnosis of aviation equipment","authors":"Sen Wang, Peng Li, Wei-hua Niu","doi":"10.1117/12.2640466","DOIUrl":null,"url":null,"abstract":"With the development of big data, artificial intelligence and other technologies, data-driven aviation equipment fault diagnosis and prediction technology has gradually become a research hotspot in the aviation field. Many typical intelligent algorithm models have been applied to this field. However, limited by the airborne embedded computing environment, there are still some problems in the deployment of intelligent prediction models represented by deep neural networks on aircraft. This paper summarizes and analyzes the research and application of typical deep neural networks such as convolutional neural networks in the field of aircraft fault diagnosis and prediction. Facing the airborne embedded environment, the current difficulties in deploying the deep neural network algorithm model in the airborne environment are analyzed. The development direction of the application of fault prediction and diagnosis algorithms represented by neural networks in the future is discussed.","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2640466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of big data, artificial intelligence and other technologies, data-driven aviation equipment fault diagnosis and prediction technology has gradually become a research hotspot in the aviation field. Many typical intelligent algorithm models have been applied to this field. However, limited by the airborne embedded computing environment, there are still some problems in the deployment of intelligent prediction models represented by deep neural networks on aircraft. This paper summarizes and analyzes the research and application of typical deep neural networks such as convolutional neural networks in the field of aircraft fault diagnosis and prediction. Facing the airborne embedded environment, the current difficulties in deploying the deep neural network algorithm model in the airborne environment are analyzed. The development direction of the application of fault prediction and diagnosis algorithms represented by neural networks in the future is discussed.
深度神经网络在航空设备故障诊断中的应用与挑战
随着大数据、人工智能等技术的发展,数据驱动的航空设备故障诊断与预测技术逐渐成为航空领域的研究热点。许多典型的智能算法模型已应用于该领域。然而,受机载嵌入式计算环境的限制,以深度神经网络为代表的智能预测模型在飞机上的部署还存在一些问题。本文对卷积神经网络等典型深度神经网络在飞机故障诊断与预测领域的研究与应用进行了总结和分析。针对机载嵌入式环境,分析了目前在机载环境下部署深度神经网络算法模型的难点。讨论了以神经网络为代表的故障预测诊断算法未来应用的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信