On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms

K. Stone, J. Keller, K. C. Ho, M. Busch, P. Gader
{"title":"On the registration of FLGPR and IR data for a forward-looking landmine detection system and its use in eliminating FLGPR false alarms","authors":"K. Stone, J. Keller, K. C. Ho, M. Busch, P. Gader","doi":"10.1117/12.782238","DOIUrl":null,"url":null,"abstract":"This paper proposes a technique for using infrared (IR) imagery to eliminate false forward-looking ground penetrating radar (FLGPR) detections by examining areas in IR images corresponding to FLGPR alarm locations. The FLGPR and IR co-location is based on the assumption of a flat earth and the pinhole camera model. The parameters of the camera and its location on the vehicle are not assumed to be known. The parameters of the model are estimated using a set of correspondences gathered from the data utilizing the covariance matrix adaptation evolution strategy (CMA-ES) optimization algorithm. Detection of false alarms is accomplished by generating a descriptor, consisting of various statistics calculated from the IR images along with the FLGPR confidence value, for each alarm location. The alarms are then classified based on the Mahalanobis distance between their descriptor and a multivariate normal distribution used to model false alarms. The false alarm distribution is computed from training data where the validity of each alarm location is already known. Using this technique, generally fifteen to twenty percent or more of the FLGPR false alarms can be eliminated without losing any true alarms.","PeriodicalId":133868,"journal":{"name":"SPIE Defense + Commercial Sensing","volume":"314-316 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.782238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

This paper proposes a technique for using infrared (IR) imagery to eliminate false forward-looking ground penetrating radar (FLGPR) detections by examining areas in IR images corresponding to FLGPR alarm locations. The FLGPR and IR co-location is based on the assumption of a flat earth and the pinhole camera model. The parameters of the camera and its location on the vehicle are not assumed to be known. The parameters of the model are estimated using a set of correspondences gathered from the data utilizing the covariance matrix adaptation evolution strategy (CMA-ES) optimization algorithm. Detection of false alarms is accomplished by generating a descriptor, consisting of various statistics calculated from the IR images along with the FLGPR confidence value, for each alarm location. The alarms are then classified based on the Mahalanobis distance between their descriptor and a multivariate normal distribution used to model false alarms. The false alarm distribution is computed from training data where the validity of each alarm location is already known. Using this technique, generally fifteen to twenty percent or more of the FLGPR false alarms can be eliminated without losing any true alarms.
前视地雷探测系统中FLGPR和IR数据的登记及其在消除FLGPR假警报中的应用
本文提出了一种利用红外图像检测前视探地雷达(FLGPR)报警位置对应的红外图像区域,消除假前视探地雷达检测的技术。FLGPR和IR协同定位是基于平地假设和针孔相机模型。摄像机的参数及其在车辆上的位置不假设是已知的。利用协方差矩阵自适应进化策略(CMA-ES)优化算法从数据中收集一组对应关系来估计模型的参数。假警报的检测是通过生成描述符来完成的,该描述符由从红外图像计算的各种统计数据以及FLGPR置信度值组成,用于每个报警位置。然后根据描述符与用于模拟假警报的多元正态分布之间的马氏距离对警报进行分类。虚警分布由已知每个报警位置有效性的训练数据计算得到。使用这种技术,通常可以消除15%到20%或更多的FLGPR假警报,而不会丢失任何真警报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信