A hybrid model for capturing implicit spatial knowledge

C. Sas
{"title":"A hybrid model for capturing implicit spatial knowledge","authors":"C. Sas","doi":"10.1145/1122935.1122945","DOIUrl":null,"url":null,"abstract":"This paper proposes a machine learning-based approach for capturing rules embedded in users' movement paths while navigating in Virtual Environments (VEs). It is argued that this methodology and the set of navigational rules which it provides should be regarded as a starting point for designing adaptive VEs able to provide navigation support. This is a major contribution of this work, given that the up-to-date adaptivity for navigable VEs has been primarily delivered through the manipulation of navigational cues with little reference to the user model of navigation.","PeriodicalId":330928,"journal":{"name":"International Workshop on Task Models and Diagrams for User Interface Design","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Task Models and Diagrams for User Interface Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1122935.1122945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a machine learning-based approach for capturing rules embedded in users' movement paths while navigating in Virtual Environments (VEs). It is argued that this methodology and the set of navigational rules which it provides should be regarded as a starting point for designing adaptive VEs able to provide navigation support. This is a major contribution of this work, given that the up-to-date adaptivity for navigable VEs has been primarily delivered through the manipulation of navigational cues with little reference to the user model of navigation.
一种获取隐性空间知识的混合模型
本文提出了一种基于机器学习的方法,用于在虚拟环境(VEs)中导航时捕获嵌入在用户运动路径中的规则。本文认为,这种方法及其提供的导航规则集应被视为设计能够提供导航支持的自适应虚拟机的起点。这是这项工作的主要贡献,因为最新的可导航ve的自适应主要是通过操纵导航线索来实现的,很少参考导航的用户模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信