Retinal Blood Vessel Segmentation Using a Generalized Gamma Probability Distribution Function (PDF) of Matched Filtered

K. Kumar, Nagendra Pratap Singh
{"title":"Retinal Blood Vessel Segmentation Using a Generalized Gamma Probability Distribution Function (PDF) of Matched Filtered","authors":"K. Kumar, Nagendra Pratap Singh","doi":"10.4018/ijfsa.296693","DOIUrl":null,"url":null,"abstract":"Retinal images contain information about the retina's blood vessel structure to predict retinal diseases such as diabetics, obesity, glaucoma, etc. Segmentation of accurate retinal blood vessels is a challenging task in the low background of retinal images. Therefore, we proposed a Generalized Gamma Distribution probability distribution function (pdf) to extract the accurate vascular structure on the retinal images. The proposed approach is divided into processing steps, the Generalized Gamma distribution kernel, and the postprocessing step. In pre-processing, the conversion of a color retinal image into a grayscale image using PCA followed by the CLAHE method and the Toggle Contrast method enhances the grayscale images of the retina. The proposed matched filter of Generalized Gamma distribution generates the MFR images. The postprocessing step extracts the thick vessels and thin retinal blood vessels using the optimal thresholding technique. The results obtained on DIRVE database average accuracy 95.00% and the STARE database 93.85%, respectively.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.296693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal images contain information about the retina's blood vessel structure to predict retinal diseases such as diabetics, obesity, glaucoma, etc. Segmentation of accurate retinal blood vessels is a challenging task in the low background of retinal images. Therefore, we proposed a Generalized Gamma Distribution probability distribution function (pdf) to extract the accurate vascular structure on the retinal images. The proposed approach is divided into processing steps, the Generalized Gamma distribution kernel, and the postprocessing step. In pre-processing, the conversion of a color retinal image into a grayscale image using PCA followed by the CLAHE method and the Toggle Contrast method enhances the grayscale images of the retina. The proposed matched filter of Generalized Gamma distribution generates the MFR images. The postprocessing step extracts the thick vessels and thin retinal blood vessels using the optimal thresholding technique. The results obtained on DIRVE database average accuracy 95.00% and the STARE database 93.85%, respectively.
基于匹配滤波广义伽玛概率分布函数的视网膜血管分割
视网膜图像包含有关视网膜血管结构的信息,用于预测视网膜疾病,如糖尿病、肥胖、青光眼等。在低背景的视网膜图像中,准确分割视网膜血管是一项具有挑战性的任务。因此,我们提出了广义伽玛分布概率分布函数(pdf)来提取视网膜图像上准确的血管结构。该方法分为处理步骤、广义伽玛分布核和后处理步骤。在预处理中,采用PCA将彩色视网膜图像转换为灰度图像,然后采用CLAHE方法和Toggle对比度方法增强视网膜的灰度图像。提出的广义伽玛分布匹配滤波器生成MFR图像。后处理步骤采用最优阈值技术提取视网膜粗血管和细血管。在DIRVE数据库和STARE数据库上的平均准确率分别为95.00%和93.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信