{"title":"Noise-aware evolutionary TDMA optimization for neuronal signaling in medical sensor-actuator networks","authors":"J. Suzuki, P. Boonma","doi":"10.1145/2598394.2609854","DOIUrl":null,"url":null,"abstract":"Neuronal signaling is one of several approaches to network nanomachines in the human body. This paper formulates a noisy optimization problem for a neuronal signaling protocol based on Time Division Multiple Access (TDMA) and solves the problem with a noise-aware optimizer that leverages an evolutionary algorithm. The proposed optimizer is intended to minimize signaling latency by multiplexing and parallelizing signal transmissions in a given neuronal network, while maximizing signaling robustness (i.e., unlikeliness of signal interference). Since latency and robustness objectives conflict with each other, the proposed optimizer seeks the optimal trade-offs between them. It exploits a nonparametric (i.e. distribution-free) statistical operator because it is not fully known what distribution(s) noise follows in each step/component in neuronal signaling. Simulation results show that the proposed optimizer efficiently obtains quality TDMA signaling schedules and operates a TDMA protocol by balancing conflicting objectives in noisy environments.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2609854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Neuronal signaling is one of several approaches to network nanomachines in the human body. This paper formulates a noisy optimization problem for a neuronal signaling protocol based on Time Division Multiple Access (TDMA) and solves the problem with a noise-aware optimizer that leverages an evolutionary algorithm. The proposed optimizer is intended to minimize signaling latency by multiplexing and parallelizing signal transmissions in a given neuronal network, while maximizing signaling robustness (i.e., unlikeliness of signal interference). Since latency and robustness objectives conflict with each other, the proposed optimizer seeks the optimal trade-offs between them. It exploits a nonparametric (i.e. distribution-free) statistical operator because it is not fully known what distribution(s) noise follows in each step/component in neuronal signaling. Simulation results show that the proposed optimizer efficiently obtains quality TDMA signaling schedules and operates a TDMA protocol by balancing conflicting objectives in noisy environments.