{"title":"Evolving feature extraction algorithms for hyperspectral and fused imagery","authors":"S. Brumby, P. Pope, A. Galbraith, J. Szymanski","doi":"10.1109/ICIF.2002.1020919","DOIUrl":null,"url":null,"abstract":"Hyperspectral imagery with moderate spatial resolution (/spl sim/30 m) presents an interesting challenge to feature extraction algorithm developers, as both spatial and spectral signatures may be required to identify the feature of interest. We describe a genetic programming software system, called GENIE, which augments the human scientist/analyst by evolving customized spatio-spectral feature extraction pipelines from training data provided via an intuitive, point-and-click interface. We describe recent work exploring geospatial feature extraction from hyperspectral imagery, and from a multi-instrument fused dataset. For hyperspectral imagery, we demonstrate our system on NASA Earth Observer 1 (EO-1) Hyperion imagery, applied to agricultural crop detection. We present an evolved pipeline, and discuss its operation. We also discuss work with multi-spectral imagery (DOE/NNSA Multispectral Thermal Imager) fused with USGS digital elevation model (DEM) data, with the application of detecting mixed conifer forest.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Hyperspectral imagery with moderate spatial resolution (/spl sim/30 m) presents an interesting challenge to feature extraction algorithm developers, as both spatial and spectral signatures may be required to identify the feature of interest. We describe a genetic programming software system, called GENIE, which augments the human scientist/analyst by evolving customized spatio-spectral feature extraction pipelines from training data provided via an intuitive, point-and-click interface. We describe recent work exploring geospatial feature extraction from hyperspectral imagery, and from a multi-instrument fused dataset. For hyperspectral imagery, we demonstrate our system on NASA Earth Observer 1 (EO-1) Hyperion imagery, applied to agricultural crop detection. We present an evolved pipeline, and discuss its operation. We also discuss work with multi-spectral imagery (DOE/NNSA Multispectral Thermal Imager) fused with USGS digital elevation model (DEM) data, with the application of detecting mixed conifer forest.