{"title":"Reduced-Order Modeling of Large Linear Subcircuits via a Block Lanczos Algorithm","authors":"P. Feldmann, R. Freund","doi":"10.1145/217474.217573","DOIUrl":null,"url":null,"abstract":"A method for the efficient computation of accurate reduced-order models of large linear circuits is described. The method, called MPVL, employs a novel block Lanczos algorithm to compute matrix Padé approximations of matrix-valued network transfer functions. The reduced-order models, computed to the required level of accuracy, are used to speed up the analysis of circuits containing large linear blocks. The linear blocks are replaced by their reduced-order models, and the resulting smaller circuit can be analyzed with general-purpose simulators, with significant savings in simulation time and, practically, no loss of accuracy.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"234","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 234
Abstract
A method for the efficient computation of accurate reduced-order models of large linear circuits is described. The method, called MPVL, employs a novel block Lanczos algorithm to compute matrix Padé approximations of matrix-valued network transfer functions. The reduced-order models, computed to the required level of accuracy, are used to speed up the analysis of circuits containing large linear blocks. The linear blocks are replaced by their reduced-order models, and the resulting smaller circuit can be analyzed with general-purpose simulators, with significant savings in simulation time and, practically, no loss of accuracy.