Boosting of Association Rules for Robust Emergency Detection

Emanuele Cipolla, Filippo Vella
{"title":"Boosting of Association Rules for Robust Emergency Detection","authors":"Emanuele Cipolla, Filippo Vella","doi":"10.1109/SITIS.2015.105","DOIUrl":null,"url":null,"abstract":"The use of association rules extracted from daily geophysical measures allows for the detection of previously unknown connections between events, including emergency conditions. While these rules imply that the presence of a given symbol occurs while a second one is present, their classification performance may vary with respect to test data. We propose to build strong classifiers out of simpler association rules: their use shows promising results with respect to their accuracy.","PeriodicalId":128616,"journal":{"name":"2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2015.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The use of association rules extracted from daily geophysical measures allows for the detection of previously unknown connections between events, including emergency conditions. While these rules imply that the presence of a given symbol occurs while a second one is present, their classification performance may vary with respect to test data. We propose to build strong classifiers out of simpler association rules: their use shows promising results with respect to their accuracy.
鲁棒紧急检测中关联规则的增强
使用从日常地球物理测量中提取的关联规则,可以发现事件之间以前未知的联系,包括紧急情况。虽然这些规则意味着在出现一个给定符号的同时出现另一个符号,但它们的分类性能可能会因测试数据而异。我们建议用更简单的关联规则来构建强分类器:它们的使用在准确性方面显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信