{"title":"Defeating lag in network-distributed physics simulations: an architecture supporting declarative network physics representation protocols","authors":"Loren Peitso, D. Brutzman","doi":"10.1145/3208806.3208826","DOIUrl":null,"url":null,"abstract":"Current shared worlds for games, simulations, AR, and VR rely on \"good-enough\" intuitively correct depictions of shared world state. This is inadequate to provide repeatable, verifiable results for decision-making, safety related/equipment-in-the-loop simulations, or distributed multi-user augmented reality. These require world representations which are physically correct to a designer-defined level of fidelity and produce repeatable, verifiable results. A network-distributed dynamic simulation architecture as illustrated in Figure 1 is presented, with consistent distributed state and selective level of physics-based fidelity with known bounds on transient durations when state diverges due to external input. Coherent dynamic state has previously been considered impossible.","PeriodicalId":323662,"journal":{"name":"Proceedings of the 23rd International ACM Conference on 3D Web Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International ACM Conference on 3D Web Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208806.3208826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Current shared worlds for games, simulations, AR, and VR rely on "good-enough" intuitively correct depictions of shared world state. This is inadequate to provide repeatable, verifiable results for decision-making, safety related/equipment-in-the-loop simulations, or distributed multi-user augmented reality. These require world representations which are physically correct to a designer-defined level of fidelity and produce repeatable, verifiable results. A network-distributed dynamic simulation architecture as illustrated in Figure 1 is presented, with consistent distributed state and selective level of physics-based fidelity with known bounds on transient durations when state diverges due to external input. Coherent dynamic state has previously been considered impossible.