The Generative Electronic Dance Music Algorithmic System (GEDMAS)

Christopher Anderson, Arne Eigenfeldt, Philippe Pasquier
{"title":"The Generative Electronic Dance Music Algorithmic System (GEDMAS)","authors":"Christopher Anderson, Arne Eigenfeldt, Philippe Pasquier","doi":"10.1609/aiide.v9i5.12649","DOIUrl":null,"url":null,"abstract":"\n \n The Generative Electronic Dance Music Algorithmic System (GEDMAS) is a generative music system that composes full Electronic Dance Music (EDM) compositions.  The compositions are based on a corpus of transcribed musical data collected through a process of detailed human transcription.  This corpus data is used to analyze genre-specific characteristics associated with EDM styles. GEDMAS uses probabilistic and first order Markov chain models to generate song form structures, chord progressions, melodies and rhythms. The system is integrated with Ableton Live, and allows its user to select one or several songs from the corpus, and generate a 16 tracks/parts composition in a few clicks.\n \n","PeriodicalId":249108,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v9i5.12649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The Generative Electronic Dance Music Algorithmic System (GEDMAS) is a generative music system that composes full Electronic Dance Music (EDM) compositions.  The compositions are based on a corpus of transcribed musical data collected through a process of detailed human transcription.  This corpus data is used to analyze genre-specific characteristics associated with EDM styles. GEDMAS uses probabilistic and first order Markov chain models to generate song form structures, chord progressions, melodies and rhythms. The system is integrated with Ableton Live, and allows its user to select one or several songs from the corpus, and generate a 16 tracks/parts composition in a few clicks.
生成电子舞曲算法系统(GEDMAS)
生成式电子舞曲算法系统(GEDMAS)是一个生成式音乐系统,可以生成完整的电子舞曲(EDM)作品。这些作品是基于通过详细的人类转录过程收集的转录音乐数据的语料库。该语料库数据用于分析与EDM风格相关的特定体裁特征。GEDMAS使用概率和一阶马尔可夫链模型来生成歌曲形式结构、和弦进行、旋律和节奏。该系统与Ableton Live集成,并允许其用户从语料库中选择一个或几个歌曲,并在几次点击中生成16个曲目/部分组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信