Scissors Congruence with Mixed Dimensions

T. Goodwillie
{"title":"Scissors Congruence with Mixed Dimensions","authors":"T. Goodwillie","doi":"10.1090/conm/682/13806","DOIUrl":null,"url":null,"abstract":"We introduce a Grothendieck group $E_n$ for bounded polytopes in $\\mathbb R^n$. It differs from the usual Euclidean scissors congruence group in that lower-dimensional polytopes are not ignored. We also define an analogous group $L_n$ using germs of polytopes at a point, which is related to spherical scissors congruence. This provides a setting for a generalization of the Dehn invariant.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/682/13806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a Grothendieck group $E_n$ for bounded polytopes in $\mathbb R^n$. It differs from the usual Euclidean scissors congruence group in that lower-dimensional polytopes are not ignored. We also define an analogous group $L_n$ using germs of polytopes at a point, which is related to spherical scissors congruence. This provides a setting for a generalization of the Dehn invariant.
混合维的剪子同余
我们引入了$\mathbb R^n$中有界多面体的Grothendieck群$E_n$。它与通常的欧氏剪子同余群的不同之处在于低维多面体不被忽略。我们还利用点上的多体胚定义了一个类似的群$L_n$,它与球剪同余有关。这为Dehn不变量的泛化提供了一个设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信