Selection of optimal parameters to predict fuel consumption of city buses using data fusion

Mazhar Hussain, M. O’nils, J. Lundgren, M. Carratù, Irida Shallari
{"title":"Selection of optimal parameters to predict fuel consumption of city buses using data fusion","authors":"Mazhar Hussain, M. O’nils, J. Lundgren, M. Carratù, Irida Shallari","doi":"10.1109/SAS54819.2022.9881365","DOIUrl":null,"url":null,"abstract":"The study aims to explore the fuel consumption of city buses with data fusion using a dataset with multiple parameters such as travelled distance, weekday, hour of the day, drivers, buses, and routes, that influence the trip fuel consumption. In this study, manipulated parameters such as modified driver, bus and route identification numbers are used together with original parameters to identify the optimal combination of parameters that can be used to enhance the accuracy of the prediction model. Two regression methods, i.e. cubic SVM and artificial neural networks (ANN), are used to demonstrate the performance of the proposed approach. Results shows that a combination of original parameters and processed parameters increases the performance.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":" 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The study aims to explore the fuel consumption of city buses with data fusion using a dataset with multiple parameters such as travelled distance, weekday, hour of the day, drivers, buses, and routes, that influence the trip fuel consumption. In this study, manipulated parameters such as modified driver, bus and route identification numbers are used together with original parameters to identify the optimal combination of parameters that can be used to enhance the accuracy of the prediction model. Two regression methods, i.e. cubic SVM and artificial neural networks (ANN), are used to demonstrate the performance of the proposed approach. Results shows that a combination of original parameters and processed parameters increases the performance.
基于数据融合的城市公交车油耗预测参数选择
该研究旨在通过数据融合来探索城市公交车的燃油消耗,该数据集包含影响行程燃油消耗的多个参数,如行驶距离、工作日、一天中的小时数、司机、公交车和路线。本研究将修改后的驾驶员、公交、路线识别号等操纵参数与原始参数结合使用,确定最优的参数组合,提高预测模型的精度。两种回归方法,即三次支持向量机和人工神经网络(ANN),证明了所提出的方法的性能。结果表明,将原始参数与处理后的参数相结合可以提高系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信