Accurate and consistent depth estimation for light field camera arrays

Sang-Heon Shim, Jae Woo Kim, Sangeek Hyun, Do-Hyung Kim, Jae-Pil Heo
{"title":"Accurate and consistent depth estimation for light field camera arrays","authors":"Sang-Heon Shim, Jae Woo Kim, Sangeek Hyun, Do-Hyung Kim, Jae-Pil Heo","doi":"10.1117/12.2518581","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a depth estimation framework for light field camera arrays. The goal of the proposed framework is to compute consistent depth information over the multiple cameras which is hardly achieved by conventional approaches based on the pairwise stereo matching. We first perform stereo matchings on adjacent image pairs using a convolutional neural network-based correspondence scoring model. Once the local disparity maps are estimated, we consolidate the disparity values to make them globally sharable over the multiple views. We finally refine the depth values in the image domain by introducing a novel image segmentation method considering edges in the image to obtain a semantic-aware global depth map. The proposed framework is evaluated on three different real world scenarios, and the experimental results validate that our proposed method produces accurate and consistent depth maps for images captured by the light field camera arrays.","PeriodicalId":350781,"journal":{"name":"Three-Dimensional Imaging, Visualization, and Display 2019","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Three-Dimensional Imaging, Visualization, and Display 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2518581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a depth estimation framework for light field camera arrays. The goal of the proposed framework is to compute consistent depth information over the multiple cameras which is hardly achieved by conventional approaches based on the pairwise stereo matching. We first perform stereo matchings on adjacent image pairs using a convolutional neural network-based correspondence scoring model. Once the local disparity maps are estimated, we consolidate the disparity values to make them globally sharable over the multiple views. We finally refine the depth values in the image domain by introducing a novel image segmentation method considering edges in the image to obtain a semantic-aware global depth map. The proposed framework is evaluated on three different real world scenarios, and the experimental results validate that our proposed method produces accurate and consistent depth maps for images captured by the light field camera arrays.
精确一致的光场相机阵列深度估计
本文提出了一种用于光场相机阵列的深度估计框架。该框架的目标是在多个相机上计算一致的深度信息,这是传统的基于两两立体匹配的方法难以实现的。我们首先使用基于卷积神经网络的对应评分模型对相邻图像对进行立体匹配。一旦估计了局部视差图,我们将合并视差值,使它们在多个视图上全局共享。最后,我们通过引入一种考虑图像边缘的图像分割方法来细化图像域的深度值,从而获得具有语义感知的全局深度图。在三种不同的现实场景下对所提出的框架进行了评估,实验结果验证了所提出的方法对光场相机阵列捕获的图像产生准确一致的深度图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信