CLUSTER ANALYSIS OF POVERTY, OPEN UNEMPLOYMENT AND EDUCATION PERCENTAGE IN CENTRAL JAVA FOR THE 2020 PERIOD

Anis Sukha Anifa
{"title":"CLUSTER ANALYSIS OF POVERTY, OPEN UNEMPLOYMENT AND EDUCATION PERCENTAGE IN CENTRAL JAVA FOR THE 2020 PERIOD","authors":"Anis Sukha Anifa","doi":"10.26618/jeb.v17i2.6485","DOIUrl":null,"url":null,"abstract":"This study aims to categorize districts/cities in Central Java Province based on cluster analysis of poverty, open unemployment and education level. The population and sample used in this study are 35 districts/cities in Central Java Province in 2020. The research data was taken from BPS secondary data. Data were analyzed using SPSS application with k-means cluster analysis. The results of this study explain that 35 regencies/cities in Central Java Province are divided into 2 clusters. The characteristics of cluster 1 have values above the average for the variables of poverty and education, but the open unemployment rate is below the average. The characteristics of cluster 2 have values above the average for the open unemployment rate variable, but the poverty and education variables have values below the average. Cluster 1 consists of districts Banyumas, Purbalingga, Banjarnegara, Kebumen, Purworejo, Wonosobo, Magelang, Boyolali, Klaten, Wonogiri, Karanganyar, Sragen, Grobogan, Blora, Rembang, Pati, Demak, Semarang, Temanggung, Pemalang and Brebes. Meanwhile, Cluster 2 consists of the districts of Cilacap, Sukoharjo, Kudus, Jepara, Kendal, Batang, Pekalongan, Tegal. In addition, there are also the cities of Magelang, Surakarta, Salatiga, Semarang, Pekalongan and Tegal.","PeriodicalId":250522,"journal":{"name":"Jurnal Ekonomi Balance","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ekonomi Balance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26618/jeb.v17i2.6485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to categorize districts/cities in Central Java Province based on cluster analysis of poverty, open unemployment and education level. The population and sample used in this study are 35 districts/cities in Central Java Province in 2020. The research data was taken from BPS secondary data. Data were analyzed using SPSS application with k-means cluster analysis. The results of this study explain that 35 regencies/cities in Central Java Province are divided into 2 clusters. The characteristics of cluster 1 have values above the average for the variables of poverty and education, but the open unemployment rate is below the average. The characteristics of cluster 2 have values above the average for the open unemployment rate variable, but the poverty and education variables have values below the average. Cluster 1 consists of districts Banyumas, Purbalingga, Banjarnegara, Kebumen, Purworejo, Wonosobo, Magelang, Boyolali, Klaten, Wonogiri, Karanganyar, Sragen, Grobogan, Blora, Rembang, Pati, Demak, Semarang, Temanggung, Pemalang and Brebes. Meanwhile, Cluster 2 consists of the districts of Cilacap, Sukoharjo, Kudus, Jepara, Kendal, Batang, Pekalongan, Tegal. In addition, there are also the cities of Magelang, Surakarta, Salatiga, Semarang, Pekalongan and Tegal.
2020年爪哇中部贫困、公开失业和教育百分比的聚类分析
本研究旨在基于贫困、公开失业和教育水平的聚类分析对中爪哇省的地区/城市进行分类。本研究使用的人口和样本为2020年中爪哇省的35个区/市。研究数据来源于BPS的二手数据。数据采用SPSS软件进行k-means聚类分析。本研究的结果解释了中爪哇省35个县/城市被分为2个集群。对于贫困和教育变量,集群1的特征值高于平均值,但公开失业率低于平均值。对于开放的失业率变量,集群2的特征值高于平均值,但贫困和教育变量的值低于平均值。集群1由Banyumas、Purbalingga、Banjarnegara、Kebumen、Purworejo、Wonosobo、Magelang、Boyolali、Klaten、Wonogiri、Karanganyar、Sragen、Grobogan、Blora、Rembang、Pati、Demak、三宝垄、Temanggung、Pemalang和Brebes区组成。与此同时,第2集群由Cilacap、Sukoharjo、Kudus、Jepara、Kendal、Batang、Pekalongan、Tegal等地区组成。此外,还有麦吉朗、苏拉卡塔、萨拉提加、三宝垄、北加隆岸和提哥等城市。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信