Generation of Handwriting by Active Shape Modeling and Global Local Approximation (GLA) Adaptation

A. Chowriappa, R. N. Rodrigues, T. Kesavadas, V. Govindaraju, A. Bisantz
{"title":"Generation of Handwriting by Active Shape Modeling and Global Local Approximation (GLA) Adaptation","authors":"A. Chowriappa, R. N. Rodrigues, T. Kesavadas, V. Govindaraju, A. Bisantz","doi":"10.1109/ICFHR.2010.40","DOIUrl":null,"url":null,"abstract":"The generation of handwriting is a complex task. In order to accommodate for the large variations involved in handwritten words deformable templates need to be used. In this paper we propose a handwriting model, based on Active shape modeling (ASM). In a two-step generation process, a template-based ASM generates characters and a Gaussian mixture regression (GMR) model concatenates the generated characters. For real time generation of cursive handwriting an adaptation of Global local approximation (GLA) methodology is used to fit the generated models.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The generation of handwriting is a complex task. In order to accommodate for the large variations involved in handwritten words deformable templates need to be used. In this paper we propose a handwriting model, based on Active shape modeling (ASM). In a two-step generation process, a template-based ASM generates characters and a Gaussian mixture regression (GMR) model concatenates the generated characters. For real time generation of cursive handwriting an adaptation of Global local approximation (GLA) methodology is used to fit the generated models.
基于主动形状建模和全局局部逼近(GLA)自适应的手写生成
书写是一项复杂的任务。为了适应手写文字的巨大变化,需要使用可变形模板。本文提出了一种基于主动形状建模(ASM)的手写模型。在两步生成过程中,基于模板的ASM生成字符,高斯混合回归(GMR)模型连接生成的字符。为了实时生成草书笔迹,采用自适应的全局局部逼近(GLA)方法对生成的模型进行拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信