Evolutionary medical image registration using automatic parameter tuning

A. Valsecchi, Jérémie Dubois-Lacoste, T. Stützle, S. Damas, J. Santamaría, L. Marrakchi-Kacem
{"title":"Evolutionary medical image registration using automatic parameter tuning","authors":"A. Valsecchi, Jérémie Dubois-Lacoste, T. Stützle, S. Damas, J. Santamaría, L. Marrakchi-Kacem","doi":"10.1109/CEC.2013.6557718","DOIUrl":null,"url":null,"abstract":"Image registration is a fundamental step in combining information from multiple images in medical imaging, computer vision and image processing. In this paper, we configure a recent evolutionary algorithm for medical image registration, r-GA, with an offline automatic parameter tuning technique. In addition, we demonstrate the use of automatic tuning to compare different registration algorithms, since it allows to consider results that are not affected by the ability and efforts invested by the designers in configuring the different algorithms, a crucial task that strongly impacts their performance. Our experimental study is carried out on a large dataset of brain MRI, on which we compare the performance of r-GA with four classic IR techniques. Our results show that all algorithms benefit from the automatic tuning process and indicate that r-GA performs significantly better than the competitors.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Image registration is a fundamental step in combining information from multiple images in medical imaging, computer vision and image processing. In this paper, we configure a recent evolutionary algorithm for medical image registration, r-GA, with an offline automatic parameter tuning technique. In addition, we demonstrate the use of automatic tuning to compare different registration algorithms, since it allows to consider results that are not affected by the ability and efforts invested by the designers in configuring the different algorithms, a crucial task that strongly impacts their performance. Our experimental study is carried out on a large dataset of brain MRI, on which we compare the performance of r-GA with four classic IR techniques. Our results show that all algorithms benefit from the automatic tuning process and indicate that r-GA performs significantly better than the competitors.
采用自动参数调整的进化医学图像配准
图像配准是医学成像、计算机视觉和图像处理中结合多幅图像信息的基本步骤。在本文中,我们配置了一种最新的医学图像配准进化算法,r-GA,它具有离线自动参数调整技术。此外,我们还演示了使用自动调优来比较不同的配准算法,因为它允许考虑不受设计人员配置不同算法的能力和努力影响的结果,这是一个强烈影响其性能的关键任务。我们的实验研究是在一个大的大脑MRI数据集上进行的,在这个数据集上,我们比较了r-GA与四种经典IR技术的性能。我们的结果表明,所有算法都受益于自动调谐过程,并表明r-GA的性能明显优于竞争对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信