Using genetic programming to evolve heuristics for a Monte Carlo Tree Search Ms Pac-Man agent

Atif M. Alhejali, S. Lucas
{"title":"Using genetic programming to evolve heuristics for a Monte Carlo Tree Search Ms Pac-Man agent","authors":"Atif M. Alhejali, S. Lucas","doi":"10.1109/CIG.2013.6633639","DOIUrl":null,"url":null,"abstract":"Ms Pac-Man is one of the most challenging test beds in game artificial intelligence (AI). Genetic programming and Monte Carlo Tree Search (MCTS) have already been successful applied to several games including Pac-Man. In this paper, we use Monte Carlo Tree Search to create a Ms Pac-Man playing agent before using genetic programming to enhance its performance by evolving a new default policy to replace the random agent used in the simulations. The new agent with the evolved default policy was able to achieve an 18% increase on its average score over the agent with random default policy.","PeriodicalId":158902,"journal":{"name":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computational Inteligence in Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2013.6633639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Ms Pac-Man is one of the most challenging test beds in game artificial intelligence (AI). Genetic programming and Monte Carlo Tree Search (MCTS) have already been successful applied to several games including Pac-Man. In this paper, we use Monte Carlo Tree Search to create a Ms Pac-Man playing agent before using genetic programming to enhance its performance by evolving a new default policy to replace the random agent used in the simulations. The new agent with the evolved default policy was able to achieve an 18% increase on its average score over the agent with random default policy.
利用遗传编程进化启发式蒙特卡洛树搜索吃豆人代理
吃豆人是游戏人工智能(AI)领域最具挑战性的测试平台之一。遗传编程和蒙特卡罗树搜索(MCTS)已经成功地应用于几个游戏,包括吃豆人。在本文中,我们使用蒙特卡罗树搜索创建了一个Ms Pac-Man游戏代理,然后使用遗传编程通过进化一个新的默认策略来取代模拟中使用的随机代理来提高其性能。与具有随机默认策略的代理相比,具有进化默认策略的新代理能够实现18%的平均分数提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信