NONEQUILIBRIUM RATE THEORY FOR CONDUCTION IN OPEN ION CHANNELS

R. Tindjong, I. Kaufman, P. McClintock, D. G. Luchinsky, R. Eisenberg
{"title":"NONEQUILIBRIUM RATE THEORY FOR CONDUCTION IN OPEN ION CHANNELS","authors":"R. Tindjong, I. Kaufman, P. McClintock, D. G. Luchinsky, R. Eisenberg","doi":"10.1142/S0219477512400160","DOIUrl":null,"url":null,"abstract":"We present a nonequilibrium reaction rate model of the ionic transition through an open ion channel, taking account of the interaction between an ion at the entrance of the channel and an ion at the binding site in a self-consistent way. The electrostatic potential is calculated by solution of the Poisson equation for a channel modeled as a cylindrical tube. The transition rate, and the binding site occupancy as a function of the left bulk concentration are compared to 1D Brownian dynamics simulations. The analysis is performed for a single binding site of high-affinity, with the exit rate influenced by barrier fluctuations at the channel exit. The results are compared with experimental data for the permeation of the Na+ ion through the Gramicidin A channel, with which they are shown to be in good agreement.","PeriodicalId":191232,"journal":{"name":"The Random and Fluctuating World","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Random and Fluctuating World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0219477512400160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a nonequilibrium reaction rate model of the ionic transition through an open ion channel, taking account of the interaction between an ion at the entrance of the channel and an ion at the binding site in a self-consistent way. The electrostatic potential is calculated by solution of the Poisson equation for a channel modeled as a cylindrical tube. The transition rate, and the binding site occupancy as a function of the left bulk concentration are compared to 1D Brownian dynamics simulations. The analysis is performed for a single binding site of high-affinity, with the exit rate influenced by barrier fluctuations at the channel exit. The results are compared with experimental data for the permeation of the Na+ ion through the Gramicidin A channel, with which they are shown to be in good agreement.
开放离子通道中传导的非平衡速率理论
我们提出了一个离子跃迁通过开放离子通道的非平衡反应速率模型,该模型考虑了通道入口的离子和结合位点的离子之间的相互作用,以自一致的方式。通过求解泊松方程,计算了以圆柱管为模型的通道的静电势。通过一维布朗动力学模拟,比较了过渡速率和结合位点占用作为左体浓度的函数。该分析是针对一个高亲和力的单一结合位点进行的,通道出口的退出率受屏障波动的影响。结果与Na+离子通过Gramicidin A通道的实验数据进行了比较,结果与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信