Categorical Reasoning about Meta-models

Laurent Thiry, Frédéric Fondement, Pierre-Alain Muller
{"title":"Categorical Reasoning about Meta-models","authors":"Laurent Thiry, Frédéric Fondement, Pierre-Alain Muller","doi":"10.1109/TASE.2012.23","DOIUrl":null,"url":null,"abstract":"Category theory is a field of mathematics that studies relationships between structures. Meta Object Facility (MOF) is a language for designing metamodels whose structures are made of classes and relationships. This paper examines how key categorical concepts such as functors and natural transformations can be used for equational reasoning about modeling artifacts (models, metamodels, transformations). This leads to a formal way of specifying equivalence between models, and offers many practical applications including refactoring and reasoning.","PeriodicalId":417979,"journal":{"name":"2012 Sixth International Symposium on Theoretical Aspects of Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Sixth International Symposium on Theoretical Aspects of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASE.2012.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Category theory is a field of mathematics that studies relationships between structures. Meta Object Facility (MOF) is a language for designing metamodels whose structures are made of classes and relationships. This paper examines how key categorical concepts such as functors and natural transformations can be used for equational reasoning about modeling artifacts (models, metamodels, transformations). This leads to a formal way of specifying equivalence between models, and offers many practical applications including refactoring and reasoning.
元模型的范畴推理
范畴论是研究结构之间关系的数学领域。元对象工具(MOF)是一种用于设计由类和关系构成结构的元模型的语言。本文研究了关键的范畴概念,如函子和自然变换,如何用于关于建模工件(模型、元模型、转换)的方程推理。这导致了一种正式的方式来指定模型之间的等价性,并提供了许多实际应用,包括重构和推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信