Feature Selection using Random Forest Classifier for Foot Strike Event Detection in Toe Walkers

Meghna Desai, Dr. Viral Kapadia
{"title":"Feature Selection using Random Forest Classifier for Foot Strike Event Detection in Toe Walkers","authors":"Meghna Desai, Dr. Viral Kapadia","doi":"10.36647/ciml/04.01.a005","DOIUrl":null,"url":null,"abstract":"Automated Gait event identification of Foot Strike (FS) and Foot Off (FO) in pathological gait data, can be time saving in comparison to conventional manual annotations done currently. Identification of FS and FO allows breaking walking trials into gait cycles and hence aids in comparison of gait parameters like joint angles, forces and moments across gait cycles. Automated Gait Event Detection is also useful in development of wearable sensor devices and robotic systems that assist gait. Researchers have proposed several automatic gait event detection algorithms based on kinematic parameters and systematic study of the literature suggests specific parameters to have higher contribution in identification of FS event in all common pathological gait patterns. We used Random Forest Classifier Feature selection technique to identify high contributing features in FS event in toe walking pediatric pathological gait dataset and the results suggest high similarity in selected features by the machine learning technique with those suggested by popular event detection algorithms based on kinematic parameters for pathological gait. Hence we conclude that RFC feature selection is suitable for feature selection in toe walkers gait dataset for event detection purpose. Keyword : Feature selection, foot off, foot strike, pathological gait.","PeriodicalId":203221,"journal":{"name":"Computational Intelligence and Machine Learning","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36647/ciml/04.01.a005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated Gait event identification of Foot Strike (FS) and Foot Off (FO) in pathological gait data, can be time saving in comparison to conventional manual annotations done currently. Identification of FS and FO allows breaking walking trials into gait cycles and hence aids in comparison of gait parameters like joint angles, forces and moments across gait cycles. Automated Gait Event Detection is also useful in development of wearable sensor devices and robotic systems that assist gait. Researchers have proposed several automatic gait event detection algorithms based on kinematic parameters and systematic study of the literature suggests specific parameters to have higher contribution in identification of FS event in all common pathological gait patterns. We used Random Forest Classifier Feature selection technique to identify high contributing features in FS event in toe walking pediatric pathological gait dataset and the results suggest high similarity in selected features by the machine learning technique with those suggested by popular event detection algorithms based on kinematic parameters for pathological gait. Hence we conclude that RFC feature selection is suitable for feature selection in toe walkers gait dataset for event detection purpose. Keyword : Feature selection, foot off, foot strike, pathological gait.
基于随机森林分类器的足部撞击事件特征选择
病理步态数据中足击(FS)和断脚(FO)的自动步态事件识别,与目前传统的人工标注相比,可以节省时间。FS和FO的识别允许将步行试验分解为步态周期,因此有助于比较步态参数,如关节角度,跨步态周期的力和力矩。自动步态事件检测在可穿戴传感器设备和辅助步态的机器人系统的开发中也很有用。研究人员提出了几种基于运动学参数的自动步态事件检测算法,系统研究文献表明,在所有常见的病理步态模式中,特定参数对FS事件的识别贡献较大。我们使用随机森林分类器特征选择技术来识别脚趾行走儿童病理步态数据集中FS事件的高贡献特征,结果表明机器学习技术所选择的特征与基于病理步态运动学参数的流行事件检测算法所建议的特征高度相似。因此,我们认为RFC特征选择适用于趾行步行者步态数据集的特征选择,用于事件检测。关键词:特征选择,脱足,足击,病理步态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信