Full-Angle Quaternions for Robustly Matching Vectors of 3D Rotations

Stephan Liwicki, Minh-Tri Pham, S. Zafeiriou, M. Pantic, B. Stenger
{"title":"Full-Angle Quaternions for Robustly Matching Vectors of 3D Rotations","authors":"Stephan Liwicki, Minh-Tri Pham, S. Zafeiriou, M. Pantic, B. Stenger","doi":"10.1109/CVPR.2014.21","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new distance for robustly matching vectors of 3D rotations. A special representation of 3D rotations, which we coin full-angle quaternion (FAQ), allows us to express this distance as Euclidean. We apply the distance to the problems of 3D shape recognition from point clouds and 2D object tracking in color video. For the former, we introduce a hashing scheme for scale and translation which outperforms the previous state-of-the-art approach on a public dataset. For the latter, we incorporate online subspace learning with the proposed FAQ representation to highlight the benefits of the new representation.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we introduce a new distance for robustly matching vectors of 3D rotations. A special representation of 3D rotations, which we coin full-angle quaternion (FAQ), allows us to express this distance as Euclidean. We apply the distance to the problems of 3D shape recognition from point clouds and 2D object tracking in color video. For the former, we introduce a hashing scheme for scale and translation which outperforms the previous state-of-the-art approach on a public dataset. For the latter, we incorporate online subspace learning with the proposed FAQ representation to highlight the benefits of the new representation.
三维旋转向量鲁棒匹配的全角四元数
本文引入了一种新的三维旋转向量鲁棒匹配距离。三维旋转的一个特殊表示,我们称之为全角度四元数(FAQ),允许我们将这个距离表示为欧几里得距离。我们将距离应用于彩色视频中点云的三维形状识别和二维目标跟踪问题。对于前者,我们引入了一种用于规模和转换的哈希方案,该方案在公共数据集上优于先前最先进的方法。对于后者,我们将在线子空间学习与提出的FAQ表示结合起来,以突出新表示的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信