Robust Possibilistic Optimization with Copula Function

R. Guillaume, A. Kasperski, P. Zieliński
{"title":"Robust Possibilistic Optimization with Copula Function","authors":"R. Guillaume, A. Kasperski, P. Zieliński","doi":"10.1109/FUZZ45933.2021.9494572","DOIUrl":null,"url":null,"abstract":"This paper deals with a linear optimization problem with uncertain objective function coefficients modeled by possibility distributions. The fuzzy robust optimization framework is applied to compute a solution. Namely, the necessity degree that the objective value is lower than a given threshold is maximized. The aim of this paper is to take the knowledge on dependencies between the objective coefficients into account by means of a family of copula functions. It is shown that this new approach limits the conservatism of fuzzy robust optimization, better evaluates possibility distributions for the values of the objective function and do not increase the complexity of the problem.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with a linear optimization problem with uncertain objective function coefficients modeled by possibility distributions. The fuzzy robust optimization framework is applied to compute a solution. Namely, the necessity degree that the objective value is lower than a given threshold is maximized. The aim of this paper is to take the knowledge on dependencies between the objective coefficients into account by means of a family of copula functions. It is shown that this new approach limits the conservatism of fuzzy robust optimization, better evaluates possibility distributions for the values of the objective function and do not increase the complexity of the problem.
具有Copula函数的鲁棒可能性优化
本文研究了一个用概率分布建模的目标函数系数不确定的线性优化问题。采用模糊鲁棒优化框架进行求解。即使目标值低于给定阈值的必要性程度最大化。本文的目的是利用一组联结函数来考虑客观系数之间的依赖关系。结果表明,该方法限制了模糊鲁棒优化的保守性,较好地评价了目标函数值的可能性分布,且不增加问题的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信