Context awareness in graph-based image semantic segmentation via visual word distributions

G. Passino, I. Patras, E. Izquierdo
{"title":"Context awareness in graph-based image semantic segmentation via visual word distributions","authors":"G. Passino, I. Patras, E. Izquierdo","doi":"10.1109/WIAMIS.2009.5031425","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of image semantic segmentation (or semantic labelling), that is the association of one of a predefined set of semantic categories (e.g. cow, car, face) to each image pixel. We adopt a patch-based approach, in which super-pixel elements are obtained via oversegmentation of the original image. We then train a Conditional Random Field on heterogeneous descriptors extracted at different scales and locations. This discriminative graphical model can effectively account for the statistical dependence of neighbouring patches. For the more challenging task of considering long-range patch dependency and contextualisation, we propose the use of a descriptor based on histograms of visual words extracted in the vicinity of each patch at different scales. Experiments validate our approach by showing improvements with respect to both a base model not using distributed features and the state of the art works in the area.","PeriodicalId":233839,"journal":{"name":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2009.5031425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper addresses the problem of image semantic segmentation (or semantic labelling), that is the association of one of a predefined set of semantic categories (e.g. cow, car, face) to each image pixel. We adopt a patch-based approach, in which super-pixel elements are obtained via oversegmentation of the original image. We then train a Conditional Random Field on heterogeneous descriptors extracted at different scales and locations. This discriminative graphical model can effectively account for the statistical dependence of neighbouring patches. For the more challenging task of considering long-range patch dependency and contextualisation, we propose the use of a descriptor based on histograms of visual words extracted in the vicinity of each patch at different scales. Experiments validate our approach by showing improvements with respect to both a base model not using distributed features and the state of the art works in the area.
基于视觉词分布的基于图的图像语义分割中的上下文感知
本文解决了图像语义分割(或语义标记)的问题,即将一组预定义的语义类别(例如cow, car, face)中的一个关联到每个图像像素。我们采用了一种基于patch的方法,通过对原始图像的过分割获得超像素元素。然后,我们在不同尺度和位置提取的异构描述符上训练条件随机场。该判别图形模型可以有效地解释相邻斑块的统计依赖性。对于考虑长期补丁依赖性和上下文化的更具挑战性的任务,我们建议使用基于在不同尺度上每个补丁附近提取的视觉词的直方图的描述符。实验通过展示不使用分布式特征的基本模型和该领域的艺术作品状态的改进来验证我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信