An iterative enhancement of higher order nonlinear mixture model for accurate hyperspectral unmixing

A. Marinoni, J. Plaza, A. Plaza, P. Gamba
{"title":"An iterative enhancement of higher order nonlinear mixture model for accurate hyperspectral unmixing","authors":"A. Marinoni, J. Plaza, A. Plaza, P. Gamba","doi":"10.1109/WHISPERS.2016.8071776","DOIUrl":null,"url":null,"abstract":"In order to provide a careful description of the interactions among endmembers in hyperspectral images, a new method for adaptive design of mixture models for hyperspectral unmixing is introduced. Specifically, the proposed approach relies on exploiting geometrical features of hyperspectral signatures in terms of nonorthogonal projections onto the space induced by the endmembers' spectra. Then, an iterative process is deployed in order to understand the order of local nonlinearity that is displayed by each endmember over every pixel. Experimental results show that the proposed approach is actually able to retrieve thorough information on the nature of the nonlinear effects over the image while providing excellent performance in reconstructing the given dataset.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to provide a careful description of the interactions among endmembers in hyperspectral images, a new method for adaptive design of mixture models for hyperspectral unmixing is introduced. Specifically, the proposed approach relies on exploiting geometrical features of hyperspectral signatures in terms of nonorthogonal projections onto the space induced by the endmembers' spectra. Then, an iterative process is deployed in order to understand the order of local nonlinearity that is displayed by each endmember over every pixel. Experimental results show that the proposed approach is actually able to retrieve thorough information on the nature of the nonlinear effects over the image while providing excellent performance in reconstructing the given dataset.
高精度高光谱解混高阶非线性混合模型的迭代增强
为了更好地描述高光谱图像中端元之间的相互作用,提出了一种用于高光谱解混的混合模型自适应设计方法。具体而言,所提出的方法依赖于利用端元光谱在空间上的非正交投影的高光谱特征的几何特征。然后,为了了解每个端元在每个像素上显示的局部非线性的顺序,部署了一个迭代过程。实验结果表明,该方法能够检索到图像上非线性效应性质的完整信息,同时在给定数据集的重构中提供了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信