Universal Adversarial Perturbation Attack on the Inception-Resnet-v1 model and the Effectiveness of Adversarial Retraining as a Suitable Defense Mechanism

Rithvik Senthil, Lakshana Ravishankar, Snofy D. Dunston, M. V
{"title":"Universal Adversarial Perturbation Attack on the Inception-Resnet-v1 model and the Effectiveness of Adversarial Retraining as a Suitable Defense Mechanism","authors":"Rithvik Senthil, Lakshana Ravishankar, Snofy D. Dunston, M. V","doi":"10.1109/ICITIIT57246.2023.10068722","DOIUrl":null,"url":null,"abstract":"In this study, we analyse the impact of the Universal Adversarial Perturbation Attack on the Inception-ResNet-v1 model using the lung CT scan dataset for COVID-19 classification and the retinal OCT scan dataset for Diabetic Macular Edema (DME) classification. The effectiveness of adversarial retraining as a suitable defense mechanism against this attack is examined. This study is categorised into three sections - the implementation of the Inception-ResNet-v1 model, the effect of the attack and the adversarial retraining.","PeriodicalId":170485,"journal":{"name":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT57246.2023.10068722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we analyse the impact of the Universal Adversarial Perturbation Attack on the Inception-ResNet-v1 model using the lung CT scan dataset for COVID-19 classification and the retinal OCT scan dataset for Diabetic Macular Edema (DME) classification. The effectiveness of adversarial retraining as a suitable defense mechanism against this attack is examined. This study is categorised into three sections - the implementation of the Inception-ResNet-v1 model, the effect of the attack and the adversarial retraining.
Inception-Resnet-v1模型的普遍对抗性摄动攻击及对抗性再训练作为一种合适防御机制的有效性
在本研究中,我们使用肺部CT扫描数据集用于COVID-19分类和视网膜OCT扫描数据集用于糖尿病性黄斑水肿(DME)分类,分析了通用对抗性扰动攻击对Inception-ResNet-v1模型的影响。对抗性再训练作为一种合适的防御机制的有效性进行了检验。本研究分为三个部分——Inception-ResNet-v1模型的实施、攻击的效果和对抗性再训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信