Novel particle filtering algorithms for fixed parameter estimation in dynamic systems

J. Míguez, M. Bugallo, P. Djuric
{"title":"Novel particle filtering algorithms for fixed parameter estimation in dynamic systems","authors":"J. Míguez, M. Bugallo, P. Djuric","doi":"10.1109/ISPA.2005.195382","DOIUrl":null,"url":null,"abstract":"Standard particle filters cannot handle dynamic systems with unknown fixed parameters. In this paper, we extend the recently proposed cost-reference particle filtering methodology (CRPF) to jointly estimate the time-varying state and the static parameters of a dynamic system. In particular, we introduce three strategies that allow assigning costs to the random samples in the state-space independently of the fixed parameters. Asymptotic results that illuminate the relationships among the methods are derived, and computer simulation results are presented to illustrate their practical implementation in a vehicle navigation problem.","PeriodicalId":238993,"journal":{"name":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","volume":"411 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2005.195382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Standard particle filters cannot handle dynamic systems with unknown fixed parameters. In this paper, we extend the recently proposed cost-reference particle filtering methodology (CRPF) to jointly estimate the time-varying state and the static parameters of a dynamic system. In particular, we introduce three strategies that allow assigning costs to the random samples in the state-space independently of the fixed parameters. Asymptotic results that illuminate the relationships among the methods are derived, and computer simulation results are presented to illustrate their practical implementation in a vehicle navigation problem.
动态系统中固定参数估计的粒子滤波新算法
标准粒子滤波器不能处理具有未知固定参数的动态系统。在本文中,我们扩展了最近提出的成本参考粒子滤波方法(CRPF)来联合估计动态系统的时变状态和静态参数。特别是,我们引入了三种策略,允许在状态空间中独立于固定参数为随机样本分配成本。推导出了说明各方法之间关系的渐近结果,并给出了计算机仿真结果来说明它们在车辆导航问题中的实际实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信