State aggregation for solving Markov decision problems an application to mobile robotics

Pierre Laroche, F. Charpillet
{"title":"State aggregation for solving Markov decision problems an application to mobile robotics","authors":"Pierre Laroche, F. Charpillet","doi":"10.1109/TAI.1998.744868","DOIUrl":null,"url":null,"abstract":"In this paper we present two state aggregation methods used to build stochastic plans, modelling our environment with Markov decision processes. Classical methods used to compute stochastic plans are highly intractable for problems necessitating a large number of states, such as our robotics application. The use of aggregation techniques allows to reduce the number of states and our methods give nearly optimal plans in a significantly reduced time.","PeriodicalId":424568,"journal":{"name":"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)","volume":"75 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1998.744868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we present two state aggregation methods used to build stochastic plans, modelling our environment with Markov decision processes. Classical methods used to compute stochastic plans are highly intractable for problems necessitating a large number of states, such as our robotics application. The use of aggregation techniques allows to reduce the number of states and our methods give nearly optimal plans in a significantly reduced time.
状态聚合求解马尔可夫决策问题在移动机器人中的应用
在本文中,我们提出了两种状态聚合方法用于建立随机计划,用马尔可夫决策过程建模我们的环境。用于计算随机计划的经典方法对于需要大量状态的问题是非常棘手的,例如我们的机器人应用。聚合技术的使用允许减少状态的数量,并且我们的方法在显著缩短的时间内给出几乎最优的计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信