A Framework for Regional Association Rule Mining in Spatial Datasets

W. Ding, C. Eick, Jing Wang, Xiaojing Yuan
{"title":"A Framework for Regional Association Rule Mining in Spatial Datasets","authors":"W. Ding, C. Eick, Jing Wang, Xiaojing Yuan","doi":"10.1109/ICDM.2006.5","DOIUrl":null,"url":null,"abstract":"The immense explosion of geographically referenced data calls for efficient discovery of spatial knowledge. One of the special challenges for spatial data mining is that information is usually not uniformly distributed in spatial datasets. Consequently, the discovery of regional knowledge is of fundamental importance for spatial data mining. This paper centers on discovering regional association rules in spatial datasets. In particular, we introduce a novel framework to mine regional association rules relying on a given class structure. A reward-based regional discovery methodology is introduced, and a divisive, grid-based supervised clustering algorithm is presented that identifies interesting subregions in spatial datasets. Then, an integrated approach is discussed to systematically mine regional rules. The proposed framework is evaluated in a real-world case study that identifies spatial risk patterns from arsenic in the Texas water supply.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

The immense explosion of geographically referenced data calls for efficient discovery of spatial knowledge. One of the special challenges for spatial data mining is that information is usually not uniformly distributed in spatial datasets. Consequently, the discovery of regional knowledge is of fundamental importance for spatial data mining. This paper centers on discovering regional association rules in spatial datasets. In particular, we introduce a novel framework to mine regional association rules relying on a given class structure. A reward-based regional discovery methodology is introduced, and a divisive, grid-based supervised clustering algorithm is presented that identifies interesting subregions in spatial datasets. Then, an integrated approach is discussed to systematically mine regional rules. The proposed framework is evaluated in a real-world case study that identifies spatial risk patterns from arsenic in the Texas water supply.
空间数据集区域关联规则挖掘框架
地理参考数据的巨大爆炸要求有效地发现空间知识。空间数据挖掘面临的一个特殊挑战是信息在空间数据集中通常不均匀分布。因此,区域知识的发现对空间数据挖掘具有重要的基础意义。本文主要研究如何在空间数据集中发现区域关联规则。特别是,我们引入了一个新的框架来挖掘依赖于给定类结构的区域关联规则。介绍了一种基于奖励的区域发现方法,并提出了一种基于网格的监督聚类算法,用于识别空间数据集中感兴趣的子区域。然后,讨论了一种系统挖掘区域规则的综合方法。提出的框架在一个现实世界的案例研究中进行了评估,该案例研究确定了德克萨斯州供水中砷的空间风险模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信