{"title":"A Framework for Regional Association Rule Mining in Spatial Datasets","authors":"W. Ding, C. Eick, Jing Wang, Xiaojing Yuan","doi":"10.1109/ICDM.2006.5","DOIUrl":null,"url":null,"abstract":"The immense explosion of geographically referenced data calls for efficient discovery of spatial knowledge. One of the special challenges for spatial data mining is that information is usually not uniformly distributed in spatial datasets. Consequently, the discovery of regional knowledge is of fundamental importance for spatial data mining. This paper centers on discovering regional association rules in spatial datasets. In particular, we introduce a novel framework to mine regional association rules relying on a given class structure. A reward-based regional discovery methodology is introduced, and a divisive, grid-based supervised clustering algorithm is presented that identifies interesting subregions in spatial datasets. Then, an integrated approach is discussed to systematically mine regional rules. The proposed framework is evaluated in a real-world case study that identifies spatial risk patterns from arsenic in the Texas water supply.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
The immense explosion of geographically referenced data calls for efficient discovery of spatial knowledge. One of the special challenges for spatial data mining is that information is usually not uniformly distributed in spatial datasets. Consequently, the discovery of regional knowledge is of fundamental importance for spatial data mining. This paper centers on discovering regional association rules in spatial datasets. In particular, we introduce a novel framework to mine regional association rules relying on a given class structure. A reward-based regional discovery methodology is introduced, and a divisive, grid-based supervised clustering algorithm is presented that identifies interesting subregions in spatial datasets. Then, an integrated approach is discussed to systematically mine regional rules. The proposed framework is evaluated in a real-world case study that identifies spatial risk patterns from arsenic in the Texas water supply.