Synthetic jet actuator based adaptive neural network control of nonlinear fixed pitch wind turbine blades

D. Deb, Sukanya Sonowal
{"title":"Synthetic jet actuator based adaptive neural network control of nonlinear fixed pitch wind turbine blades","authors":"D. Deb, Sukanya Sonowal","doi":"10.1109/CCA.2013.6662759","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network-based adaptive compensation scheme to cancel the effect of uncertain, highly complex and dynamic synthetic jet actuator nonlinearities. Approximation of a nonlinearly parameterized model of synthetic jet actuator characteristics by a linearly parameterized function is performed using neural network approximators. The nonlinearity function is approximated over a range of rotor rotational speed of a wind turbine blade. An adaptive inverse is employed for cancelling the effect of actuator nonlinearities, which is accomplished by use if another neural network. Adaptive update laws are also employed for estimation of blade physical dimensional parameters. A state feedback control law is designed to control the nonlinear wind turbine dynamics in presence of signal dependent actuator nonlinearities.","PeriodicalId":379739,"journal":{"name":"2013 IEEE International Conference on Control Applications (CCA)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2013.6662759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a neural network-based adaptive compensation scheme to cancel the effect of uncertain, highly complex and dynamic synthetic jet actuator nonlinearities. Approximation of a nonlinearly parameterized model of synthetic jet actuator characteristics by a linearly parameterized function is performed using neural network approximators. The nonlinearity function is approximated over a range of rotor rotational speed of a wind turbine blade. An adaptive inverse is employed for cancelling the effect of actuator nonlinearities, which is accomplished by use if another neural network. Adaptive update laws are also employed for estimation of blade physical dimensional parameters. A state feedback control law is designed to control the nonlinear wind turbine dynamics in presence of signal dependent actuator nonlinearities.
基于合成射流致动器的非线性定距风力发电机叶片自适应神经网络控制
本文提出了一种基于神经网络的自适应补偿方案,以消除不确定、高度复杂和动态的综合射流执行器非线性的影响。利用神经网络逼近器,用线性参数化函数逼近合成射流作动器的非线性参数化模型。在风力机叶片转子转速范围内近似求解了非线性函数。利用另一个神经网络来抵消作动器非线性的影响。叶片物理尺寸参数的估计也采用自适应更新规律。设计了一种状态反馈控制律,用于在执行器非线性信号依赖的情况下控制风力机的非线性动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信